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1 THE GOAL OF SMASS

SMASS is a simple simulation program which can flexibly deal with many
different forms of individual behavior. The combination of these features:
simplicity, different rules of behavior for one individual actor, and flexibility
for the user to switch between different applications with different rule sets are
rarely found in existing programs.

In the literature we find essentially four kinds of social simulations. On the
one hand, there are programs -usually working in a cellular automata setting-
like [18], [20], [22], [24] which investigate the macro effects occurring when all
individuals perform one single rule of behavior. Second, there are simulation
studies of populations of individuals in the spirit of evolutionary game theory in
which all members of a population perform one single rule of behavior, and in
which the relative success of such a population in comparison with other popu-
lations is at stake [3], [15], [29]. A third, recent approach uses object-oriented
software like [14] or [30]. Here, different rules (‘methods’) can be added to each
agent (‘object’). These systems being implemented in variants of object-oriented
C, are difficult to program, and switching between rules is not straightforward.
Last not least, there are systems including a full cognitive apparatus for each
agent thus providing room for each actor’s applying many different rules. Such
systems, exemplified best by [11] are far from being simple.

In any real social system a person may perform actions of several different
kinds, and the person usually has some choice of which kind of action to engage
in. In order to become more realistic, social simulations therefore must include
the possibility of behaving according to different rules. As this may drive the
system towards great complexity and make it difficult to use, special attention
has to be given to securing flexibility and simplicity of application. One of the
main goals in the design of SMASS is to strike a balance between simplicity and
flexibility of changing the rules on the one hand and still cover a space large
enough to comprise the most central types of human social interaction on the
other hand.

In SMASS each individual commands several different rules of behavior
among which it can choose in a given situation. But the user of SMASS is
not restricted to those rules which presently are implemented. SMASS is built
such that, first, among a range of implemented rules, the user may choose any
arbitrary subset and run a simulation in which the actors are restricted to rules

1



from that subset, and such that, second, it is relatively easy to invent and plug
in new rules of behavior without changing SMASS’s global ‘architecture’. A
comparison with object-oriented systems providing similar facilities [30], [31]
still has to be made.

Up to now I did not concentrate on finding new, ‘interesting’ simulation
results, I was focusing on the development of the frame program and on repro-
ducing different existing programs in that frame. At the present stage, SMASS
is able to simulate systems of actors which can perform quite a number of differ-
ent kinds of actions but I have not yet carried out systematic simulations with
mixed sets of actions. What I did up to now in applying SMASS is to reproduce
several existing ‘one-rule’ studies by simply inactivating all other rules of behav-
ior present in the system. I think that this is enough indication of the potential
of SMASS and justifies the description of some of its major components even in
the absence of new, ‘interesting’ simulation results. My long term goal in devel-
oping the system is to perform simulation studies of realistic social systems, like
social institutions. A comprehensive formal theory of social institutions which
can serve as a basis for implementation is described in [6] and [9].

2 WHAT TRIGGERS INDIVIDUAL ACTION: BDI VERSUS
RULE GOVERNED BEHAVIOR

A widely used approach to the construction of multi-agent systems is the so-
called BDI-approach (from belief, desire, intention). In a BDI model each actor
is equipped with components representing his or her beliefs, desires and in-
tentions [12], [26]. I use the term ‘BDI-approach’ here in a broad sense so
as to encompass approaches which do not use all three of these items. The
BDI-approach has its sources in ‘classical’ Bayesian decision theory and in the
possible worlds approach of formal logics. Main applications of BDI systems are
in the technical construction of robots which can interact with other robots and
humans. The BDI approach also is attractive to social scientists for it centrally
uses notions which humans themselves use in natural language to reason about
their actions.

However, I am not the first to argue that the BDI-model is deficient for the
simulation of social systems, and that it has to be enriched by components for
purely rule or norm-based behavior [1]. For this, there are at least four argu-
ments, a theoretical, a methodological, a practical, and an ‘internal’ argument.

The theoretical argument focusses on the central ‘actor-loop’ in which input
from the environment is used to produce output-behavior of an agent. In the
BDI-model this loop always, i.e. for each action, includes some use of the BDI
apparatus. In other words, there is no action that was not preceded by some
deliberation. This assumption lies at the heart of the rational choice approach.
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But in sociology there also is another paradigm, that of homo sociologicus,
which has emerged from work of, for instance, Durkheim and Parsons. Homo
sociologicus does not always use his BDI apparatus, a great deal of his behav-
ior consists in following rules and norms. The picture roughly is this. An actor
has stored many rules and norms which can be applied in respective, specific
situations, and which are given together with specific conditions of applicabil-
ity. Whenever a person finds herself in a situation fitting to some application
condition of a rule she will apply that rule and behave accordingly.

These approaches lead to different actor loops. In the ‘pure’ BDI case the
actor in each loop takes a decision according to the principles of Bayesian de-
cision theory (or some weakened version thereof), whereas homo sociologicus
needs not decide in each loop. In some loops he may simply check which of his
rules applies in the respective situation. This check is not a decision, it is a
process of fitting or of recognition or an application of a production system.

These two different kinds of loops cannot be realized simultaneously, a per-
son cannot at the same time choose an action on the basis of decision theory
and ‘choose’ the same action by matching the situation against the application
conditions of her stored rules. In the second case it is not appropriate to speak
of a choice at all. It seems to me that both kinds of behavior (BDI guided and
rule guided) are incommensurable in a precise sense [4], [5]. Without going into
details, the point is this. In a decision there have to be at least two alternatives
among which one can choose whereas in a rule guided situation it may well be
that only one application condition of one rule matches against the situation.
Defenders of the BDI approach will say that the case in which there is just one
alternative still is a case of choice. In defending the sociological paradigm I
would say that if there is no alternative there is no choice, and there is no deci-
sion. What seems to be a quarrel about the use of words for a trivial borderline
case, in fact indicates a central schism between two ways of looking at the social
world [7]. Because of the far reaching implications of looking at things either
way there is no easy way to settle this dispute -as we know from the work of
Kuhn and Feyerabend.

In spite of the difficulty of this controversy it is not difficult to enrich the
actor-loop so that both types of behavior (BDI guided and rule guided) can be
realized by the same agent in different situations. The person simply may
decide in some loops, and act on the basis of rules in other loops.

The methodological argument againts the pure BDI model points to the well
known fact that belief, desire and intention are mental predicates and are not
directly observable. Moreover, the theory-guided access to them also is severely
restricted and can be achieved only in laboratory situations from which there
is no reliable inference to behavior in other, real-life situations. Therefore, the
use of BDI components yields a restriction when simulation results are to be
compared with real data, for the latter do not cover the central parts of the
BDI-model in a reliable way.

The practical argument consists in pointing to simulation programs, like
SMASS, in which rule- and norm-based behavior is primary, and ‘rational’,
BDI features are secondary. The system at present can reproduce many of
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the existing simulations of cluster- and group-formation on game theoretical or
other principles [18], [22], [24].

Finally, the ‘internal’ argument can point to the fact that rule- and/or norm-
based behavior has proponents both in sociology (as documented, say, by the
classics of Durkheim and Parsons) and increasingly also in DAI, for instance [2],
[23], [34], [35].

In SMASS, a person has no explicit BDI apparatus. Her beliefs, desires and
intentions are present only implicitly, namely in her rules of behavior which
may -but need not- refer to principles of (bounded) rationality. Primarily, an
actor’s behavior in SMASS is social-habitual, or ‘situated’ as some authors call
it. Each actor has a character which is given by a list of weights, one for each
mode of behavior. If the system is run, say, with 5 modes the character of actor
A has the form [C1, ..., C5]. In each given situation, if the person is in the active
state, she chooses one of the five modes (action-types) M1, ...,M5, say Mi, with
probability Ci, and then tries to perform an action of the chosen type according
to the rule of behavior which is present for that type. If, for instance, M1 is
‘rest’ and C1 is 0.5 the person is very lazy.

The characters are automatically created by means of discrete distributions
whose weights either can also be automatically created or set ‘by hand’. In a
future version the choice of modes will be achieved by a mixture of character
and a set of social norms (see ‘check-environment’ in the ‘kernel’ predicate, line
(10) in the appendix).

3 ACTIONS: TYPES AND TOKENS

In dealing with a multiplicity of actions of different types the first problem to
overcome is given by the token-type distinction. An actor usually can perform
different action tokens of one type of action. The type ‘exerting power’ [8] can be
realized by many different action tokens, ranging from Hans’ beating Fritz here
and now to Helmut Kohl’s signing the ‘re-unification’ treaty for West-Germany
in 1989. The type ‘playing a prisoner’s dilemma game’ can be realized by Marco
and Pietro being questioned by the public prosecutor here and now or by my
quarrelling with my neighbour about dealing with the garbage ten years ago.
The type ‘exchange’ may be realized by my buying some cherries from grocer
Kuhnt at 12.12.1984 or by my signing a document at the notary’s office of Thaler
in 3.3.1986. In first approximation, tokens may be seen as ‘elements’ making
up a ‘class’ which is the ‘type’. However, as well known from the philosophy
of action this view ultimately is untenable the reason being that the notion
of action is soaked with that of propositional attitudes and in the domain of
propositional attitudes the principle of extensionality breaks down [25], [16],
[28]. Put differently, the problem is that one action token under two different
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descriptions may ‘belong to’ two different types. A standard example are the
two action types ‘I wanted to shoot the thief’ versus ‘I wanted to shoot my
drunken friend’ both expressing the same token which roughly consists in my
intentionally pulling the trigger after having heard noise in my home late at
night and having seen some person moving in the dark. One reaction to this
opaqueness of action tokens has been to deny them the status of scientifically
reputable entities which in turn, and ultimately, would mean to give up any
science dealing with human actions.

An alternative reaction is to acknowledge the contested status of action
tokens but nevertheless use them with sufficient precaution in social theorizing;
this is the philosophy for SMASS. Yet another problem arises at once. The
number of action tokens that may be relevant in a social system usually is so
large that it is practically impossible to store all possible tokens in a computer’s
memory. In humans, the tokens are not explicitly represented. Rather, they
are created in the course of action and interaction. In the real course of events
in which action tokens get realized there is an irreduzible element of chance.
No action token in the real world can be completely described before it has
taken place. In SMASS, action tokens accordingly are introduced and created
in the course of processing and in their creation random elements are used with
varying degree depending on the action type and the level of abstraction.

So SMASS uses action types and action tokens. The type of an action is
given by a certain syntactic format which may vary from action-type to action-
type. By contrast, action tokens are created in each situation when the actor
has decided to perform an action of a distinct type. The creation of a token of
that type is part of the rule which governs that type of behavior. In most cases
a token is created by a mixture of random elements and of some deliberation in
the way of bounded rationality.

The action type ‘exertion of power’, for instance, is linked to a syntactic
scheme of the form [A, B, IA, OA, IB,OB], with variables A, B, IA, OA, IB,OB.
A denotes the person exerting power, B the person over whom power is exerted,
IA, OA denote the input and output (integer) values of the interaction for A,
and IB,OB the in- and output values for B. If A and B are interpreted, from
such a type a token is created by assigning concrete numbers to IA, OA, IB, OB.
Intuitivly, A may choose some token in which ‘her’ input-output relation IO-
IA is large irrespective of the values IB,OB, as long as it is feasible for B to
perform such a token. If power is exerted, for instance, by A’s ordering B to
carry a load for A then the value of A’s input is just the value, or cost in this
case, of her uttering the order while A’s output value is the value -which we
may conceive in monetary terms- of the load being carried. On the other side,
B’s input value is the value (cost) of his effort or labour of carrying the load,
and B’s output value is his cost of getting exhausted, tired and loosing part of
his lifetime. Of course, representing these ‘values’ numerically is a strong ideal-
ization, but its not worse than other such representations lying at the heart of
exchange- and game theory. Integers are used for reasons of simplicity.
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4 ACTIVE AND REACTIVE BEHAVIOR

An actor in SMASS is in one of two different states. In the active state he is
free to perform any action he may choose. In the reactive state, she must react
according to some protocol that has been released in a previous interaction.
For instance, in a previous interaction of exchange her partner may have agreed
to exchange definite quantities of definite commodities, and may have himself
adjusted his state so that, for him, the exchange is done. This partner then has
released a protocol telling her that he has done his part and that she now has
to do her part. When she finds this protocol in a given situation she must act
accordingly.

SMASS gives priority to the reactive states (see the predicate for ‘kernel’,
lines 10-13 in the appendix). Whenever an actor is called up in a simulation run
at a given time he first checks whether any protocols have been activated for
him, that is, he is in the reactive state. When he finds such activated protocols
he will execute them and this is all he will do at that time. He gets into the
active state only when at the time he is called up no protocols are activated for
him. In an extreme case an actor at all times may be the target of many pro-
tocols and thus never become really active. Such cases do not seem unrealistic,
though.1

5 RULES OF BEHAVIOR

The different types of action which the actors can perform in SMASS are called
modes. For each mode SMASS contains a rule of behavior. When an actor
is in the active state he will choose a certain mode of behavior. The rule for
that mode then is called up and regulates the actor’s performance. Typically,
a rule of behavior for a given mode comprises different steps which need not be
independent of each other. Also, the order in which these steps are carried out
may be different for different rules, and in some rules, steps may be missing.

Step 1: The person chooses another actor with whom she will interact; in some
1In a first, properly distributed version of SMASS, called DMASS [10] which runs on

transputer systems, this case can create a bottleneck because some actors may be waiting for
reactions of others who never react due to their being fully engaged in satisfying the wants of
other actors.
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cases several other actors are chosen.
Step 2: A token of the mode (action-type) is chosen or created. This is the
token which the person ultimately will perform (if she succeeds).
Step 3: She checks whether interaction with the actor(s) chosen in 1) is feasi-
ble. In exchange, for instance, if a token is chosen representing the purchase of
a certain quantity of a certain good, a partner must have enough of that good.
Step 4: If the preceding steps have succeeded the person ‘performs’ the action
token. She adjusts her own state accordingly, and she releases a protocol that
triggers the partner’s corresponding reactions. This release is done by noting a
fact which activates a particular protocol that is already programmed. When
a protocol is activated it will be carried out in future actions by her partners
and/or herself.

Each protocol used here is part of a corresponding mode and its code belongs
to that for the mode. Various protocols that have been proposed in the litera-
ture, like the contract net protocol [13], SANP [21] or the proposal in [19] can
potentially be used in SMASS in connection with different modes. A further
advantage of SMASS is that, being written in PROLOG, the message contents
which are handed over in the protocols practically don’t need any specific for-
mat. Any PROLOG term -which may be a whole PROLOG program itself-
may serve as message content. Not all rules involve a protocol. One rule of
behavior presently implemented is ‘bodily exercise’. Performing an action of
that type simply changes the actor’s bodily strength. When all four steps -up
to the activation of the protocol- succeed the actor has acted in the given mode,
he has performed an action-token of the kind represented by the given mode.

6 UPDATING

SMASS provides means for synchronous and asynchronous updating. Each
mode has ‘its’ own updating procedure which consists of two parts. One part
belongs to the core program and is called up at the end of each period of time
(see the ‘adjust’ examples in the appendix). The second part is implicit in the
rules of behavior linked with each mode. The second part may be absent for
modes which require strict synchronous updating. For instance, in the mode
‘exchange’ asynchronous updating is quite natural. After each exchange both
partners adjust their endowments. However, even in this case at the end of a
period a synchronous updating is called up which replaces each actor’s final (in
the given period t) endowment by the same (initial) endowment for the follow-
ing period t + 1.2

2It may be noted that in the distributed version of the system, DMASS, all the problems of
updating simply vanish. A kind of complementary problem arising in the distributed system,
namely to report the agents’ states to some external device at the end of certain real-time
periods, is less likely to cause artificial effects, and much easier to handle technically.
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7 FLEXIBLE CHOICE OF SYSTEMS OF RULES

A salient feature of SMASS is its flexibility of picking a set of modes (action-
types), and running a simulation with just these modes. This flexibility has
two aspects. First, the user may choose any subset of those modes which are
already implemented, that is, for which corresponding rules of behavior and
adjustment have been programmed. As a special case of this aspect, the user
may pick just one single mode, and in this way repeat or vary many of the ‘one
rule’ simulation studies found in the literature. Second, the user may himself
formulate new rules of behavior and add them to the system by programming
and adding corresponding rules of behavior and update rules. If new variables
are introduced which require new initial data, it is also necessary to add these
data or some program creating them automatically. Adding a new mode may
require from two hours work in simple cases up to several hours or even a
couple of days for complicated modes involving complicated protocols, provided
the programmer is fit in PROLOG and has got accustomed with SMASS.

SMASS contains a module for administrating the links between the modes on
the one hand and the rules of behavior, the rules of updating, and the variables
on the other hand. In this module a list of links between the modes chosen
by the user and their corresponding rules of behavior, updating, and variables
is created when SMASS is started The main program is formulated invariantly
relative to these link lists. All procedures in the main programm can work with
different such link-lists, and the execution of the main program takes the same
form for different lists of links.

Put differently, when the user has chosen a particular set of modes to be
simulated, SMASS will create a corresponding link-list, and then run the main
program. When, in the next session the user changes the set of modes he wants
to use, SMASS creates new link-lists, and with these runs the main program
which is the same as before (and in all other sessions).

8 A BRIEF SYNTHESIS

SMASS is written in SWI-PROLOG [32] (which is free under UNIX, for instance
in the LINUX package and also can be freely used with permission for academic
applications under DOS) and laid down in several files. The ‘main’ file, SIM ,
which actually is among the smallest, contains the module for the creation of
link-lists and the main program. A second file, PARA, contains parameters
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which must be set by the user before the simulation is started. The parameters
include things like the number of runs (for statistics), the number of periods
for one simulation run, the number of actors, the type of neighbourhoods used,
and/or the number of neighbours, the number of commodities, as well as game
parameters (payoffs), gridwidth (for cellular modes), ranges of initial physical
strengths of the actors and other ranges for other variables. Most importantly,
PARA must contain a list of the modes which are chosen by the user. This is
just a list of numbers picked from the total number of modes implemented (16
at present). Also, PARA contains lists of weights for the creation of characters.

For each mode or rule of behavior, the file RULES contains the code gov-
erning that rule including code for adjustments in updating as far as there are
special adjustment for the rule.

When SIM is started, PARA is consulted, and on the basis of the param-
eters present in PARA, initial data are automatically created. The code for
data creation resides in another file CREATE which is consulted when needed.
Alternatively, if a file DATA of initial data is provided by the user, SMASS
will take the data from DATA and will not create his own data. The data in
any case are stored in an external file also called DATA. Next the link module
creates link-lists for the modes it finds in the PARA file. With these link-lists
the main program is started. In the main program, in each statistical run the
files DATA and RULES are consulted, and a simulation run is started. A sim-
ulation run simulates a fixed number of periods of time (as laid down in PARA).
In each period, each actor is picked once (in random order) and activated. He
checks whether there are protocols for him to perform, and if so, he executes
them. If there are no protocols he is set in the active state. He chooses one of
the modes (those which the user has picked for the present run) according to
his character, and then acts in that mode along the lines of the rule of behavior
for that mode which is present in RULES. This may involve the release of a
protocol to be executed in the next period. In either case, when having reacted
to a protocol, or acted, the actor is done and the next actor is called up. At
the end of the period, individual updating is executed for each of the modes
as laid down in RULES and global updating is made as described in SIMUL.
When the set number of periods is finished, all facts created in these periods are
deleted, and the next statistical run is started. At the end of each simulation
run (and if wanted, at the end of each period), the relevant data and new facts
are stored in a external file RESULTS.

With RESULTS one can do the usual statistics and take the output, or
RESULTS itself, as input for a graphics program for the visualization of the
results. I use XPCE [33] for this purpose which also is programmed in PRO-
LOG. Permission to use XPCE under UNIX is free for academic applications,
the DOS version costs about 200 dollars.
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APPENDIX: AN MINIATURE EXAMPLE

Here is the code of SMASS restricted to the application of three very simple
rules. All features of the handling of data output and technical details pertain-
ing to test and debugging are omitted as well as the automated creating of link
lists mentioned in Sec.8. Compare [32] for explanations of the built-in PROLOG
predicates which can not be given here. Loading the different files in a direc-
tory accessible to PROLOG, compiling SIM , and entering ‘start’ plus return
should make SMASS running. The results can be seen in a file RESULTS that
will be newly created by SMASS, and the data which were created and used
should be present in a new file DATA. Changing the list of arguments of the
‘modes’ predicate in line /∗ 1 ∗/ will produce simulations in which only those
rules present by names in that list are applied.

% File PARA (parameters for SMASS)

/∗ 1 ∗/ modes( [takeweak,donothin,schellin ]). runs(2). periods(10).
actors(47). use old data(no). gridwidth(8).
variables in rule(donothin, [wealth]).
variables in rule(schellin, [location schelling,schelling colour ]).
variables in rule(takeweak, [location,neighlist,strength,wealth weak ]).
weights(donothin,1,[101]). weights(schellin,1,[101]).
weights(takeweak,1,[101]). type of neighbourhood(schellin,moore,1).
type of neighbourhood(takeweak,von Neumann,2). choose run(1).
% modes([takeweak,donothin,schellin ]) in line (1) specifies the list
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% L= [ takeweak,donothin,schellin ] of modes (action-types)
% which are used in the present simulation.

% File SIM (core program)

/∗ 2 ∗/ start :- consult(para), consult(pred), consult(rules),
( delete file(results) ; true), use old data(X),
( X = no, create data; X = yes, consult(data) ), begin.
create data :- ( delete file(data) ; true ), consult(createex),
modes(L), make global data(L), make variable list(L,L1),
length(L1,E), ( between(1,E,N), nth1(N,L1,VAR), make(VAR), fail
; true ), !.
make global data(L) :- actors(AS), make characters(AS,L).
make variable list(L,L1) :- asserta(variable list([ ])), length(L,E),
( between(1,E,X), nth1(X,L,M), variables in rule(M,L2),
build variable list(L2), fail ; true ), variable list(L1),!.
build variable list(L2) :- variable list(L), append(L,L2,L3),
retract(variable list(L)), asserta(variable list(L3)),!.
% R denotes a statistical run, T a period of time. RR is the number of
% statistical runs, TT that of periods of time for each simulation run,
% AS the fixed number of actors. RESULTS is the external file in
% which the raw data are written. All dynamical variables (those whose
% values may change during a simulation run) are written in the format
% fact(R,T,var(X1,...,Xn)) where R,T are as above, and ‘var’ varies in
% the names of variables attached to the given modes (like ‘wealth’,
% ‘strength’ etc.). The loop in (4) produces TT executions of ‘kernel’,
% that is, one simulation run covering TT periods. After each such run
% in (4) all dynamical facts are deleted, and the original data are
% reconsulted in (3) for the next run.
% (7) loops over all actors. In each step one actor A is randomly drawn
% from list L (6) and activated. After ‘activate(R,T,A)’ (9) is
% executed actor A had his opportunity in period T as described in the
% following, A is deleted from the actor list (10), and another actor is
% called up in (7).

begin :- runs(RR), periods(TT),
( between(1,RR,R), mainloop(R,TT), fail; true ), !.
mainloop(R,TT) :-
/∗ 3 ∗/ consult(data), findall(X,fact(0,0,X),L), length(L,E),
( between(1,E,Z), nth1(Z,L,FACT), append(results),
write(fact(R,1,FACT)), write(’.’), nl, told, retract(fact(0,0,FACT)),
asserta(fact(R,1,FACT)), fail; true ), append(results), nl, told,
/∗ 4 ∗/ ( between(1,TT,T), kernel(R,T), fail; true ),
/∗ 5 ∗/ retract facts,!.
retract facts :- ( fact(X,Y,Z), retract(fact(X,Y,Z)), fail; true ).
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kernel(R,T) :- actors(AS), findall(I,between(1,AS,I),L),
/∗ 6 ∗/ asserta(actor list(L)),
/∗ 7 ∗/ ( between(1,AS,N), choose and activate actor(R,T,N), fail;
true ), retract(actor list(L1)),
/∗ 8 ∗/ adjust(R,T),!.
choose and activate actor(R,T,N) :- actor list(L), length(L,E),
/∗ 9 ∗/ Y is random(E)+1, nth1(Y,L,A), activate(R,T,A), delete(L,A,L1),
retract(actor list(L)), asserta(actor list(L1)),!.

% When actor A gets activated he first checks his environment (10). This
% yields a possibility for immediate reactions to external (non-social)
% changes which are not implemented in the present version. Next, A
% executes protocols (11), if there are such for her. The protocols
% ‘protocol(M,A,R,T)’ for all modes M are found in the RULES file, and
% succeed only if a previous entry has been made in the fact base
% signalling that the protocol should be executed by A in the next
% period. If no protocols are activated in this way A switches to the
% active state. She chooses a mode M and acts in that mode (12), (13).
% The predicates ‘act in mode(M,A,R,T)’ are found in the file RULES.
% When in a given period all actors have ‘acted’ once, in (8) the
% adjustment is called up. First, in (14) for each mode an individual
% adjustment is made, if necessary. The corresponding predicates are
% found in the RULES file. Second, in (15) a global adjustment is made.
% This includes writing all facts present in the RESULTS file.

/∗ 10 ∗/ activate(R,T,A) :- check environment(R,T,A),
/∗ 11 ∗/ ( execute protocols(R,T,A)
;
/∗ 12 ∗/ choosemode(R,T,A,M),
/∗ 13 ∗/ ( act in mode(M,A,R,T) ; true)
),!.
check environment(R,T,A) :- true.
/∗ 11 ∗/ execute protocols(R,T,A) :- protocol(M,A,R,T).
/∗ 8 ∗/ adjust(R,T) :- modes(L), length(L,E), actors(AS),
/∗ 14 ∗/ ( between(1,E,X), individual adjust(X,R,T,AS,L), fail; true ),
/∗ 15 ∗/ global adjust(R,T), append(results), nl, told,!.
individual adjust(X,R,T,AS,L) :- nth1(X,L,Z),
/∗ 14 ∗/ ( between(1,AS,A), adjust(Z,A,R,T), fail ; true),!.
/∗ 15 ∗/ global adjust(R,T) :- T1 is T+1, repeat,
( fact(R,T,FACT), retract(fact(R,T,FACT)), asserta(fact(R,T1,FACT)),
append(results), write(fact(R,T1,FACT)), write(’.’), nl, told,
fail; true ),!.

% The character C of A is found in the file DATA which was downloaded
% in (2).

choosemode(R,T,A,M) :- fact(R,T,character(A,C,SUM)), length(C,K),
modes(L), Z is random(SUM∗1000)+1, asserta(aux sum(0)),
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between(1,K,X), do1(X,Z,C,Y), Z ≤ Y , nth1(X,L,M),
retract(aux sum(SS)),!.
do1(X,Z,C,Y) :- aux sum(S), nth1(X,C,C X), Y is S + (C X ∗ 1000),
retract(aux sum(S)), asserta(aux sum(Y)),!.

% File PRED (auxiliary predicates)

% Create random numbers normally or discretely distributed, as well as
% von Neumann- and Moore neighbourhoods.

normal distribution(N,AS,L,U,SI) :- MU is L + (0.5 ∗ (U-L)),
( between(1,AS,A), determine nd value(N,MU,SI,L,U,A), fail; true),!.
determine nd value(N,MU,SI,L,U,A) :- repeat, X is random(10001)+1,
X4 is (1/10000)∗(((X-1)∗U)+(10001-X)∗L), W is integer(X4),
PI is pi, X1 is 2∗(PI∗(SI∗SI)), X2 is (1 / sqrt(X1)),
X3 is (-((W-MU)∗(W-MU))) / (SI∗SI), Y is X2 ∗ exp(X3),
W1 is random(10001)+1, Z is (W1-1)/10000, Z ≤ Y, between(L,U,W),
asserta(nd expr(N,A,W)), !.
make discrete distribution(N,AS,EX,LIST) :-
( between(1,AS,A), determine dd value(N,A,EX,LIST), fail; true ),!.
determine dd value(N,A,EX,LIST) :- X is random(100)+1,
between(1,EX,Z), nth1(Z,LIST,W Z), X < W Z, assert( dd expr(N,A,Z)),!.
calculate sum(L,S) :- asserta(counter(0)), length(L,E),
( between(1,E,X), auxpred(L,X) , fail ; true), counter(S),
retract(counter(S)).
auxpred(L,X) :- nth1(X,L,N), counter(C), C1 is C+N,
retract(counter(C)), asserta(counter(C1)), !.
make nbh(moore,N,I,J,L) :- gridwidth(G), ( N=1, moore nbh 1(G,I,J,L)
; 1 < N, moore nbh 1(G,I,J,L2), asserta(auxlist(I,J,L2)),
length(L2,K), ( between(1,K,X), mnbh(X,L2,N,G,I,J), fail ; true),
auxlist(I,J,L5), delete(L5,[I,J],L6), sort(L6,L),
retractall(auxlist(A,B,L8))
),!.
mnbh(X,L2,N,G,I,J) :- nth1(X,L2,Y), Y=[I1,J1], N1 is N-1,
make nbh(moore,N1,I1,J1,L3), auxlist(I,J,L4), append(L4,L3,L5),
retract(auxlist(I,J,L4)), asserta(auxlist(I,J,L5)), !.
moore nbh 1(G,I,J,L) :- recalculate neg(G,I,1,Im),
recalculate neg(G,J,1,Jm), recalculate pos(G,I,1,Ip),
recalculate pos(G,J,1,Jp),
L = [[I,Jm],[Im,Jm],[Im,J],[Im,Jp],[I,Jp],[Ip,Jp],[Ip,J],[I,Jm]].
recalculate neg(G,I,H,I1) :- X is I-H, ( ( 0 < X, I1 is X
; 0 =:= X, I1 is G ) ; X < 0, I1 is (G+I)- H ),!.
recalculate pos(G,I,H,I1) :- X is I+H, ( ( I < G, X ≤ G, I1 is X
; I =:= G, (H > 0, I1 is H; H =:= 0, I1 is G) ) ; I < G, X > G,
I1 is (H+I)-G ),!.
make nbh(von Neumann,N,I,J,L) :- gridwidth(G), ( N=1,
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von Neumann nbh 1(G,I,J,L) ; 1 < N, von Neumann nbh 1(G,I,J,L2),
asserta(auxlist(I,J,L2)), length(L2,K),
( between(1,K,X), vNnbh(X,L2,N,G,I,J), fail ; true),
auxlist(I,J,L5), delete(L5,[I,J],L6), sort(L6,L),
retractall(auxlist(A,B,L8)) ),!.
vNnbh(X,L2,N,G,I,J) :- nth1(X,L2,Y), Y=[I1,J1], N1 is N-1,
make nbh(von Neumann,N1,I1,J1,L3), auxlist(I,J,L4), append(L4,L3,L5),
retract(auxlist(I,J,L4)), asserta(auxlist(I,J,L5)), !.
von Neumann nbh 1(G,I,J,L) :- recalculate neg(G,I,1,Im),
recalculate neg(G,J,1,Jm), recalculate pos(G,I,1,Ip),
recalculate pos(G,J,1,Jp), L = [[I,Jm],[Im,J],[I,Jp],[Ip,J]].
decompose(Y,I,J,G) :- between(1,G,Z), Y ≤ Z∗G, Z1 is Z-1, I is Z,
J is Y-(Z1∗G),!.

% File CREATE (generates characters and data)

% The characters for the actors are created and written to the DATA
% file. For each variable initial data are created and written to the
% DATA file.
make characters(AS,L) :- build up characters(AS,L), export results(AS).
build up characters(AS,L) :- length(L,E),
( between(1,E,X), make distribution(X,L,E,AS), fail ; true ),
( between(1,AS,A), collect characters(L,E,A), fail ; true),
retractall(dd expr(M1,M2,M3)), !.
make distribution(X,L,E,AS) :- nth1(X,L,M), weights(M,EX,LIST),
make discrete distribution(M,AS,EX,LIST), retract(weights(M,EX,LIST)),!.
collect characters(L,E,A) :- asserta(character(A,[ ])),
( between(1,E,X), nth1(X,L,M), add character(M,A), fail; true ),!.
export results(AS) :- ( between(1,AS,A), export(A), fail; true),!.
export(A) :- character(A,L2), calculate sum(L2,SUM), append(data),
write(fact(0,0,character(A,L2,SUM))), write(’.’), nl, told,
retract(character(A,L2)),!.
add character(M,A) :- dd expr(M,A,C), character(A,L1), append(L1,[C],L2),
retract(character(A,L1)), asserta(character(A,L2)),!.
make(wealth) :- actors(AS), domain of wealths(L,U),
sigma wealths(SI), normal distribution(wealth,AS,L,U,SI),
( between(1,AS,A), nd expr(wealth,A,W), append(data),
write(fact(0,0,wealth(A,W))), write(’.’), nl, told,
retract(nd expr(wealth,A,W)), fail ; true ),!.
make(wealth weak) :- actors(AS), domain of wealth weak(L,U),
sigma wealth weak(SI), normal distribution(wealth weak,AS,L,U,SI),
( between(1,AS,A), nd expr(wealth weak,A,W), append(data),
write(fact(0,0,wealth weak(A,W))), write(’.’), nl, told,
retract(nd expr(wealth weak,A,W)), fail ; true ),!.
make(strength) :- actors(AS), weights(strength,LIST),
expressions(strength,EX),
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make discrete distribution(strength,AS,EX,LIST),
( between(1,AS,A), dd expr(strength,A,W), append(data),
write(fact(0,0,strength(A,W))), write(’.’), nl, told,
retract(dd expr(strength,A,W)), fail; true ),!.
make(location) :- actors(AS), gridwidth(G), G1 is G∗G,
findall(X,between(1,G1,X), L), asserta(cell list(L)),
( between(1,AS,A), locate(A), fail ; true), retractall(cell list(L2)),!.
locate(A) :- cell list(L), length(L,E), X is random(E)+1, nth1(X,L,Y),
gridwidth(G), decompose(Y,I,J,G), append(data),
write(fact(0,0,location(A,I,J))), write(’.’), nl, told,
asserta(fact(0,0,location(A,I,J))), delete(L,Y,L1),
retract(cell list(L)), asserta(cell list(L1)),!.
make(neighlist) :- type of neighbourhood(TYPE,DEGREE), actors(AS),
( between(1,AS,A), make neighbourhood(A,TYPE,DEGREE), fail ; true).
make neighbourhood(A,T,D) :- fact(0,0,location(A,I,J)),
make nbh(T,D,I,J,L), length(L,E), asserta(aux list(A,[ ])),
( between(1,E,X), collect neighbours(A,X,L), fail ; true),
aux list(A,L2), sort(L2,L3), append(data),
write(fact(0,0,neighlist(A,L3))), write(’.’), nl, told,!.
collect neighbours(A,X,L) :- nth1(X,L,Z), Z=[I,J],
fact(0,0,location(N,I,J)), aux list(A,L1), append(L1,[N],L2),
retract(aux list(A,L1)), asserta(aux list(A,L2)),!.
make(location schelling) :- gridwidth(G), actors(AS),
L=[[1,1],[1,G],[G,1],[G,G]], asserta(auxlist([ ])),
( between(1,AS,A), schelling locate(A,G,L), fail; true),
retractall(auxlist(LL)),!.
schelling locate(A,G,L) :- auxlist(L1), repeat, I is random(G)+1,
J is random(G)+1, not member([I,J],L1), not member([I,J],L),
asserta(fact(0,0,schelling loc(A,I,J))), append(data),
write(fact(0,0,schelling loc(A,I,J))), write(’.’), nl, told,
append(L1,[[I,J],L2), retract(auxlist(L1)), asserta(auxlist(L2)),!.
make(schelling colour) :- actors(AS),
( between(1,AS,A), set colour(A), fail ; true),!.
set colour(A) :- fact(0,0,schelling loc(A,I,J)), N is I+J,
N1 is N mod 2, ( N1 =:= 0, append(data),
write(fact(0,0,colour(A,white))), write(’.’), nl, told;
append(data), write(fact(0,0,colour(A,black))), write(’.’), nl,
told ), !.

% File RULES

% RULE 1: ‘donothin’. The person intentionally does not do anything. A
% fixed sum (3∗E) is deducted from her wealth in each period.

domain of wealths(50,500). sigma wealths(20). exist min(20).
act in mode(donothin,A,R,T) :- feasible(donothin,A,R,T),
chooseaction(donothin,A,R,T), perform(donothin,A,R,T),!.

17



feasible(donothin,A,R,T) :- fact(R,T,wealth(A,W)), exist min(E),
E1 is 3∗E, W1 is W-E1, W1 > 0,!.
chooseaction(donothin,A,R,T) :- true,!.
perform(donothin,A,R,T) :- fact(R,T,wealth(A,W)), W1 is W-5,
retract(fact(R,T,wealth(A,W))), asserta(fact(R,T,wealth(A,W1))),!.
protocol(donothin,A,R,T) :- fail.
adjust(donothin,A,R,T):- true.

% RULE 2: ‘schellin’.
% One of the first programs leading to emergent patterns, here: the
% clustering of persons of equal colour. For explanation consult
% (Schelling,1971).
act in mode(schellex,A,R,T) :- feasible(schellex,A,R,T),
chooseaction(schellex,A,R,T), perform(schellex,A,R,T),!.
feasible(schellex,A,R,T) :- true.
chooseaction(schellex,A,R,T) :- gridwidth(G),
fact(R,T,schelling loc(A,I,J)), scan neighbourhood(A,G,I,J,R,T,ANSWER),
( ANSWER=yes ; calculate move(A,R,T,G) ),!.
scan neighbourhood(A,G,I,J,R,T,ANSWER) :- make nbh(moore,1,I,J,L),
findall(N,neighb(N,L,R,T),L1), length(L1,E1),
findall(N1, equal colour(N1,A,L,R,T), L2), length(L2,E2),
( ( ( E1 ≤ 2, 1 ≤ E2; 3 ≤ E1, E1 ≤ 5, 2 ≤ E2 )
; 6 ≤ E1, E1 ≤ 8, 5 ≤ E2 ), ANSWER=yes ; ANSWER=no),!.
neighb(N,L,R,T) :- member([I,J],L), fact(R,T,schelling loc(N,I,J)).
equal colour(N,A,L,R,T) :- member([I,J],L), fact(R,T,schelling loc(N,I,J)),
fact(R,T,colour(N,CN)), fact(R,T,colour(A,CA)), CA=CN.
calculate move(A,R,T,G) :- G1 is G∗G, between(1,G1,X),
decompose(X,I,J,G), not fact(R,T,occupied(B,I,J)),
not fact(R,T,schelling loc(B1,I,J)),
scan neighbourhood(A,G,I,J,R,T,ANSWER), ANSWER=yes,
asserta(fact(R,T,occupied(A,I,J))),!.
perform(schellex,A,R,T) :- true.
protocol(schellex,A,R,T) :- fail.
adjust(schellex,A,R,T) :-
( fact(R,T,occupied(A,I,J)), fact(R,T,schelling loc(A,IA,JA)),
retract(fact(R,T,schelling loc(A,IA,JA))),
asserta(fact(R,T,schelling loc(A,I,J))),
retract(fact(R,T,occupied(A,I,J)))
; true
),!.

% RULE 3: ‘takeweak’ (take from the weaker).
% Each actor tries to find a neighbour which is physically weaker, and
% to take away some part of that persons wealth. The amount taken away
% is randomly chosen from a pre-specified range (3∗SS). In (17) a
% protocol is formulated which will be performed by the addressee in
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% the next period. The message content for that protocol is ‘handed
% over’ by asserting it in (16) and by being read in (17) by the
% addressee. More complicated protocols basically work in the same way,
% all necessary regulations being described and handed over (perhaps
% several times) as ‘messages’ in the way of the example.
exist min weak(20). domain of values(20). domain of wealth weak(100,500).
sigma wealth weak(40). expressions(strength,4).
weights(strength,[10,50,90,100]). type of neighbourhood(moore,1).
act in mode(takeex,A,R,T) :- feasible(takeex,A,R,T),
chooseaction(takeex,A,R,T), perform(takeex,A,R,T).
feasible(takeex,A,R,T) :- exist min weak(MIN),
domain of values(SS), fact(R,T,neighlist(A,L)), length(L,E),
fact(R,T,strength(A,SA)), between(1,E,X),
investigate(R,T,X,L,MIN,SA,SS).
investigate(R,T,X,L,MIN,SA,SS) :- nth1(X,L,N), fact(R,T,strength(N,SN)),
SN < SA, fact(R,T,wealth weak(N,WN)), W1 is WN-(3∗SS), !, MIN ≤ W1,
T1 is T+1, not fact(R,T1,give the stronger(N,Y)),
asserta(neighb(N,WN)).
chooseaction(takeex,A,R,T) :- true.
perform(takeex,A,R,T) :- neighb(N,WN), retract(neighb(N,WN)),
fact(R,T,wealth weak(A,WA)), domain of values(SS), S1 is 3∗SS,
X is random(S1), WA1 is WA+X, retract(fact(R,T,wealth weak(A,WA))),
asserta(fact(R,T,wealth weak(A,WA1))), T1 is T+1,
/∗ 16 ∗/ asserta(fact(R,T1,give the stronger(N,X))).
/∗ 17 ∗/ protocol(takeex,A,R,T) :- fact(R,T,give the stronger(A,X)),
fact(R,T,wealth weak(A,WA)), W1 is WA-X,
retract(fact(R,T,wealth weak(A,WA))),
asserta(fact(R,T,wealth weak(A,W1))),
retract(fact(R,T,give the stronger(A,X))).
adjust(takeex,A,R,T) :- true.
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