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Classical Collision Mechanics

Wolfgang Balzer & Felix Miihlholzer

Abstract: With the present work we pursue three goals. First, we exemplify some
questions of theory of science and the corresponding answers (theoreticity, problem
of theoretical terms, empirical claim of a theory, Ramsey eliminability of theoretical
terms) by the very simple example of classical collision mechanics. Second, the notion
of measurement model can be illustrated by this example in a clear way; in particular,
we obtain a complete overview of all measurement models. And third, we get a nice
example of the notion of reduction of one theory to another, because collision mechan-
ics can be reduced in a simple way to a specialization of classical particle mechanics.

I. Axioms and models

We axiomatize classical collision mechanics (abbreviated by CCM in the following)
by introducing the set-theoretic predicate ’is a CCM’. Entities matching this predi-
cate are called 'models of CCM’; the class of all such models — i. e. the extension of
the predicate ’is a CCM’ — is denoted by M (CCM) or M for short. The statements
occurring in the following definitions we call ’axioms of the theory’.

D1 zisa CCM (in symbols: z € M(CCM) or z € M) iff
there exist P,t,ts,v and m such that the following holds:'
1) r = <P, {tl,tg},IEl+,IR3,v,m>
2) P is a finite set containing at least two elements
) t1,to € IR and t; < ty
)’UZPX {tl,tg} — IR?
ym: P — IR*
6) Xper m(p)v(p,t1) = Epep m(p)v(p, t2).

P x {t1,t2} is the Cartesian product of P with the set {¢1,%>}. The notation 'f : X —
Y’ says that f is a function from X to Y. We will assume in the following that P
consists of n elements py, ..., p, (n > 2), which are always numbered in this way.
Among all models (P, {t1,t2},IRT,IR?, v, m) of CC M, only those deserve the name
models of classical collision mechanics in which P,tq,t>,v and m have the following

Rt is the set of positive real numbers, and IR3 the set of triples of real numbers.



meaning: P is a set of particles, and for all particles p € P, v(p,t) is the velocity
of p at a given time t; (i = 1,2). The velocity was given by a vector from IR32
expressing both magnitude and direction. All velocities and both time points ¢; and
to are measured relative to an inertial coordination system with spatial Cartesian
coordinates 1,2, z3 and ’absolute’ time coordinate ¢. m(p;) denotes the mass (in
the sense of classical physics) of the particle p; (1 < i < n). The function m is called
the mass function.

The equation D1.6) is the so-called law of conservation of momentum. It is con-
venient to transform this equation as follows. If we write

v; = v(ps, t2) — v(ps, t1) and m; == m(p;), 1 <i < n,
then D1.6) is equivalent to the following equation
(1) XYi<i<n miv; = 0.

v; is the difference of final and initial velocities of the particle p;. The transition to
another inertial coordinate system is described by a Galilean transformation. In this
transformation, the quantities m; and v; do not change. Equation (1) thus remains
the same for any such coordinate system.

II. A first version of the empirical claim

A first problem with such an empirical, axiomatized, physical theory can be formulat-
ed as follows. What has such a theory to do with the world at all? The set-theoretical
predicate ’is a CC'M’ can be understood without reference to the physical world; it is
sufficient that one understands the language used for its definition, enriched by math-
ematics and set-theoretical expressions. It is clear that there are countless systems to
which the predicate ’is a CC M’ can be applied and which have very little to do with
collision mechanics. For example, the following entity is a CCM:

({3,4}, {1,2},IR* IR, {((3,1),(£,0,0)) | ¢ € {1,2}} U {((4,1),(~¢,0,0)) |
t e {12} {3, 1), {4, 1)}).

This fact suggests to include another component into the theory, namely a set of con-
crete physical systems to which one usually applies the classical collision mechanics.
By ’one’ is meant the group of physicists trained in this field, and ’usually’ is meant:
as described in books, journal articles, lectures and talks. Also we will describe such
systems in this way.

We will represent these systems in set-theoretic formulations. One such system
is described by a tuple of the form (P, {t;,,},JR",IR? v,m) which fulfills D1.1) to
D1.5). In the following we will call such tuples which satisfy D1.1) - D1.5), but not
necessarily D1.6), potential models of CCM:

D2z is a potential model of CCM (in symbols: z € M,(CCM) or x € M,) iff
there exist P, tq,ts,v and m such that:



1) z = (P, {t1, t:},IRT IR? v, m)

2) P is a finite set containing at least two-elements
3) t1,t2 € IR and t1 < ta

4) v: P x {tl,tg} — IR?

5)m:P — IR".

Those potential models of CC'M that are used as applications of the physical theory
CCM, are collected to a set I*. This set we call the set of intended applications of
CCM. We then conceive the theory CCM itself as a tuple T consisting of the "formal’
part M and the ’pragmatic’ part I*:

T = (M,I*).

Here, as said, I* is a subset of M.

The specification of I* cannot be done by a set-theoretic predicate. How should
one be able to capture pragmatic relations by a precise definition, if in such a char-
acterization words like 'usually’ occur? The term I* is open for different linguistic
expressions. I* refers to the same piece of reality as the predicate ’is a CC'M’ does.
The investigation of this piece is intented by the physicists.

Given this state of affairs, one is inclined to describe the function of the predicate
is a CCM’ as follows. This predicate serves to make a claim about a part of the
world given in the form of I*, namely the claim that all elements of I* are models of
CCM. Let us call this assertion the empirical claim* of CCM. Assuming that CC M,
as a theory, has the form T' = (M, I*), with I* C M, the empirical claim* can be
defined as follows:

D3  The empirical claim* of the theory T' = (M, I*) is the proposition I* C M.

How can we find out whether the empirical claim of theory T is true? Since the
proposition ’For all z: if x € I*, then x € M’ begins with ‘for all’; one can use a very
simple method of verification. One simply checks whether all elements of I* also lie
in M, i.e. whether the law of conservation of momentum is valid for those elements,
or not. But as already said, we cannot imagine the elements of I* giving by precise
definitions. Nor will we succeed in finding elements of I* explicitly described anywhere
in the literature. By ’explicit’ we mean that all components are given precisely, either
in the form of lists as in the purely mathematical example given above, or in the form
of linguistic characterizations. The typical way to arrive at a well-specified element of
I* is rather the following. One is introduced to a concrete physical system with the
hint that this is an intended application. The fact that this system can actually be
understood as a potential model in the sense specified above cannot be seen directly,
but must be determined in detail.

In the case of quantitative theories, this determination consists in nothing else than
many processes of measurement. Thus, the verification of the empirical claim leads
to performances of measurements in certain real systems with the aim of verifying or
falsifying the regularities asserted by the theory.



One can try to make these measurements explicit by specifying actions or instruc-
tions for action, but in doing so one gets into a swamp of details and pragmatics. One
can, on the other hand, try to explicate measurement in the language of the relevant
theory. This is much easier, and we turn to this possibility.

In the language of the theory CC M, measurements for the two quantities v and
m are to be discussed.

III. Measurement models

It will be said that in a real system a measurement is made if the measured value is
uniquely determined by known values of the other quantities occurring in the system
and by the special experimental arrangement.

In the case of mass, when restricted to CCM, the description of a measurement
— more precisely, the description of a system realized during the measurement — is
given by two components. First, the description of the measurement contains the
specification of velocity values which can be ’produced’ and controlled in the experi-
ment. Second, it contains the specification of the experimental arrangement. Since
we confine ourselves to the linguistic framework of C'C'M, this specification cannot
consist of a realistic description of an experiment, but only by a formula. This for-
mula describes conditions for velocities which can be used to determine mass values
uniquely. These conditions are expressed by a formula? CV,; .(P, {t1,t2},v), where
the three variables a, b, ¢ are instantiated, respectively, by P, {t1,t2} and v. The word
‘uniquely’ in the case of the mass function should always mean: 'uniquely except for
an proportionality factor’; uniqueness in a stricter sense cannot be demanded here. If
one considers instead of the mass function m the appertaining "proportionality class’
[m], which is defined by

[m] :=={m' |m': P - IR* A JaVp(a € IRT Am/(p) = am(p))},
we can define the measurement models for mass of CCM as follows:

D4 =z is a measurement model for mass of CCM iff:

1) r = (P, {tl,tz},]fl+,IR3,v,m) € M(CCM)

2) there is a formula CV, 4 . which contains (besides mathematical constants) only
three free variables a, b, ¢, so that the following holds:

21) Cvav[%c(P, {tl, tg}, ’U)

2.2) for all P’ t},t5,v',m',m" it holds:
if (P, {t],t,}, IR IR3 v/ ,m') € M and (P, {t],t,}, IRTIR3 v',m") € M and
CVp (P, {t],t5},v"), then [m'] = [m"]

3)x el

The symbols P',t},t5,v',m',m" here have the status of free variables. We use them
only for the sake of readability. CV, (P', {t],t5},v") denotes the formula in which

2The symbol C refers to ‘conditions’ and V to ‘velocity’.



a, b, and ¢ are replaced by P’,{t],t,} and v, respectively. Condition 1) states that =
is a model of CCM. 2.1) states that in the system z all the conditions for velocity
values are valid, and 2.2) expresses that m is determined by v uniquely — up to a
proportionality factor. 3) is the pragmatic component of the notion of measurement
model for mass of CCM. 3) guarantees that actually only those systems fall under this
notion, which can be applied by physicists to measure mass in CCM. In most cases it
is unproblematic to understand the formula CV,p (P, {t1,t2},v) as a description of
a part of a measuring method, although CV, (P, {t1,t2},v) does not refer in any
way to the actions performed during the measurement, to the instrument(s) used, or
to other components.

D5 z is a measurement model of CCM for measuring velocities after collision iff:

].) Tr = (P, {tl,tg},IE{+,IE{3,v,m> € M(CCM)

2) there is a formula® CM, ; . which, besides mathematical constants, contains only
three free variables a, b, ¢, so that the following holds:

21) CMa’b7C(P, {tl, tz}, m)

2.2) for all P’ ¢}, t,,v",v", m' holds: if
(P {t),th}, RTIR? o' ,m') € M and (P, {t},t,}, IRT IR? v",m') € M and
CMyp,o (P {t], th},m') and o' [prycge,y = 0" |prciay )
then o' |prygtay = 0" [Prxies}

3)z el

D5) is the analogue of D4), except that here v|py 1 plays the role of m in D4).
'v|p’ denotes the restriction of v to a subset B of the domain of v. D5), however,
is uninteresting in the highest degree: There are no velocity measurement models in
the sense of this definition at all, since the uniqueness condition D5-2.2) can not be
fulfilled. We will briefly discuss this at the end of this paper.

IV. Classification of measurement models for mass

In CC M, unlike many other theories, it is relatively easy to obtain a complete overview
of all measurement models for mass. Here, of course, it is assumed that one has an
overview of the set I* of intended applications. The question of a general character-
ization of the measurement models for a certain quantity of a theory T, which we
formulate here for the first time, leads in other physical theories to difficult math-
ematical problems. Precisely because of the simple mathematical relations used in
CCM, CCM provides a good example to illustrate the general problem.

To classify the measurement models for mass, we proceed in two steps. First, we
ask what the velocity differences v; of the particles must be for a given number of
particles so that (1) has a solution with m > 0 (i.e., my > 0,...,m,, > 0). If (1) is
solvable with m > 0, we say that (1) is positively solvable. The second question is then
under which circumstances the masses m; are uniquely determined by the velocity

3Here, M refers to ‘mass’.



differences v; (except for a proportionality factor). In this question we assume that
(1) is already positively solvable. Thus, we ask for the additional conditions which,
in the case of positive solvability, guarantee the uniqueness of the values m;. We say
that (1) is uniquely positive solvable if (1) is positively solvable and all the values m;
are uniquely determined by the values v;.

The conditions under which (1) is uniquely positive solvable provide formulas char-
acterizing measurement models for m. Thus, an overview of all possible conditions
under which (1) is uniquely positive solvable entails the desired classification of mea-
surement models.

T1 (1) is positively solvable iff there is no u € IR? with the following property:
v;@u>0forall i€ {1,...n} and v; ® u > 0 for at least one* k € {1,...,n}.

J

'®” here stands for the scalar product in IR?, i.e., v; ® u = T1<j<3 v]u;, where v

and u; are the components of v; and u, respectively.

T1) becomes graphically plausible if we consider the hyperplane u := {v € IR? |
v®u = 0} and the positive halfspace ut := {v € IR® | v @ u > 0} of the vector u.
Roughly speaking we can then say: (1) is positively solvable iff there is no hyperplane
H C IR? such that all v; (1 <4 < n) lie on one side of H.

This already answers the first question about the positive solvability of (1) in a
graphically satisfying way. We now ask whether (1) is uniquely positive solvable.

T2 Let (1) be positively solvable. Then a) and b) are equivalent:
a) The solution is unique.
b) There is no J C {1,...,n} such that J # {1,...,n} and X5 A;ju; =01s
positively solvable.

This uniqueness criterion, while mathematically beautiful, is difficult to apply. To
obtain a more feasible criterion, we reformulate (1) into an equation:

mi

(2) (v1,-00)| © | =0

(v1, ..., vy) is to be understood as a 3 x n matrix with the column vectors vy, ..., vy,.
We interpret (vg,...,v,) as a linear mapping ¢ : IR® — IR® and write

4The proofs of the theorems appearing in this paper are compiled in an appendix.



my
m:= | ° |. Equation (2) is then: ¢(m) = 0.
m,,

D6)  a) [[v1,..;vn]] == { Ti<i<n Aivi | A € IR, 1 < i <n}.
b) K" :={m € IR" | m; > 0,1 <i < n} (‘positive cone’).
¢) Ly :== K™ N ker ¢ (’solution manifold’).

ker ¢ denotes the kernel of ¢, i.e. set {z | ¢(z) = 0}. Since K™ is an open set of I
R", Ly is a open subset of ker ¢ and, in particular, a submanifold of IR" (where we
also call the empty set a ’manifold’).> If we denote by rg ¢ the rank of ¢, i.e., the
dimension of [[vy, ..., v,]], we obtain the new criterion:

T3 Let (1) be positively solvable. Then the following is true:
The solution is unique, exactly if one of the following three cases exist:
a)yn=2andrg¢=1
b)yn=3and rg ¢ =2
c)n=4and rg ¢ =3.

With the help of the theorems, we now obtain the following possibilities of unique
positive solvability, where we first distinguish the cases according to the number of
particles. We express the cases of unique positive solvability by A; (i = 1,2, 3) in order
to emphasize that the respective characterization after transition into the language
of set theory would yield a formula A;, which could describe a measurement model
for mass. We do not write these formulas in an explicit way, because this would yield
rather complex, mathematical parts of these formulas.

Case 1), n = 2. Because of T1) (1) is positively solvable iff there is a A < 0, so that
v = Avg. If v; # 0 (and therefore also vy # 0), then by T3) the solution is unique.
We thus have a first class of measurement models; A;: n = 2 and v; # 0, and there
isa A <0 with vy = Avs.
Case 2), n = 3. Let V := [[v1, v2, v3]]. We further distinguish according to the dimen-
sion of V:
(a) dim V = 1. Because of T1), (1) is positively solvable iff two vectors from V' are
non-zero and point in opposite directions. Because of n = 3 and rg ¢ = 1, uniqueness
is not possible.
(b) dim V = 2. A positive solution exists if the conditions of T1) are fulfilled. The
solution also is then unique, because of T3).

Thus, we have another class of measurement models; As: n = 3 and dim V = 2,
and there is no u € IR? with v; ® u > 0 for all i < 3 and v; ® u > 0 for at least one

5A precise definition of the topological notions of manifold and submanifold can be found, for
example, in (1).



k<3.

c¢) dim V' = 3. In this case there is no positive solution because the v; (1 < i < 3) are
linearly independent.

Case 3), n = 4. Let V = [[v1,v2,v5,v4]]. Again we distinguish according to the
dimension of V:

a) dim V' = 1: analogously to 2.a).

b) dim V = 2: Analogously to 2.b). However, because of T3) there is no uniqueness.
c¢) dim V = 3: A positive solution exists if the conditions of T1) are fulfilled. It is then
also unique — because of T3).

This gives again a class of measurement models; Az: n = 4 and dim V = 3, and
there is no u € IR? with v; ®u > 0 for all i < 4 and v, ® u > 0 for at least one k < 4.
Case 4), n > 5: A positive solution exists if the conditions of T1) are fulfilled. However,
by the assumptions of T3) uniqueness is not possible.

Since our case distinctions are exhaustive, we have thus obtained a complete know-
ledge of the measurement models for mass of CC'M.

V. Reduction

Classical mechanics is a very ‘meager’ theory. One can have good reasons to base the
mass measurement on C'C' M , only if the background of the classical particle mechanics
(CPM) is regarded. Only then, if on the basis of the relations of forces it gets clear
that the momentum conservation law (D1.6) is valid, the function m : P — IRT from
CCM really is the mass function. The relation between CCM and CPM can be
represented by a simple reduction relation which will be defined in the following.

First, however, we have to state the set-theoretic predicates for CPM and a spe-
cialization of CPM in which one can show in a simple way that the monentum
conservation law holds.

D7 xisa CPM iff® there are P,T, s, m, f such that the following holds:”

1) z = (P,T, N, JRT,IR?, s, m, f)

2) P is a finite non empty set

3) T is an interval of IR

4) s: P x T — IR3, and there is an open interval 7" with T C 7" and a mapping
s’ : P x T" — IR?® which is continuously differentiable in the second argument,
and §' |pxr =

5)m: P — RT

6) f: PxTx N — IR?

7)forallpe P and all t € T, Sien f(p,t,i) = m(p)D%s(p,t).

Here D2s(p,t) expresses the second derivative of s — including the boundary points ¢

6An intuitive explanation of the predicate ’is a CPM’, which we omit here, can be found, for
example, in (3).
7N is the set of non-negative integers.



of T which are found in 7" — in the second argument.

D8 zis an ACPM (classical particle mechanics, in which ’actio equals reaction’
holds) iff there exist P,T,s,m, f such that the following holds:

Dz= (P;T7N7m+7m'3737m7f>

2) zisa CPM

3) there exists a bijective, inverse mapping ¢ : P x N — P x N with the
following properties:

(a) for all p,q € P, and all 4,j € N it holds: ¢(p,i) = (¢,5) =2 p# ¢

(b) for all p,q € P,i,j € N and ¢t € T it holds: ¢(p,i) = (q,71) — f(p,t,i) = —f(q,t,1).

D8.3) is to be understood as follows: The i-th force acting on a particle p has as its
source a particle ¢, on which the particle ¢ acts by a j-th force, whose source is now
the particle p. This relation between the particles and the forces is described by the
function ¢. Condition a) states that no particle exerts a force on itself; and condition
b) expresses just what is called the ’actio equals reaction’ principle. Instead of 'z is
an ACPM’ we also say "z is a model of ACPM’, or simply « € M(ACPM).

Analogously to the case of CC' M, one can interpret potential models and intended
applications:

D9 x is a potential model of ACPM (in symbols: z € M,(ACPM)) iff there are
P,T,s,m, f such that:

1) x = (P,T,N,JR",IR?, s,m, f)

2) P is a finite non empty set

3) T is an interval of IR

4) s: P x T — IR3, and there is an open interval T’ with T C 7" and a mapping
s' 1 P x T'" — TR? which is continuously differentiable in the second argument
and s’ |pxr = s

5)m: P — R*

6) f: PxTx N — IR?.

An intended application of ACPM is a potential model of AC'PM which the physicists
actually have in mind in an application of ACPM.

This relation between the ’basic theory’ ACPM and the theory CCM which
should be reduced to ACPM, is most conveniently expressed by a relation p C
M,(CCM) x M,(ACPM). The following definition results almost inevitably on the
basis of the physical interpretation of the theories:

D10 (z,z') € piff there exist P, ty,t3,v,m, P',T,s,m’, f so that the following holds:

1) z = (P, {t1, .}, IRT,R®,v,m) € M,(CCM) and
o' = (P',T,N,IR"R?,s5,m’, f) € M,(ACPM)

29) P =P

3) {ti,ta} = T

4) v = DS‘PX{h,tz}
5) m=m'.



This definition testifies that the name 'reduction’ for the relation between C'CM and
ACPM is perhaps a little bit exaggerated (if we compare it to the paradigm of re-
duction: the relation between thermodynamics and statistical mechanics). We would
be rather inclined to say that CCM is ’contained’ in ACPM (whereby ’containing’
would still have to be specified). In any case, however, p possesses all those proper-
ties which are usually expected from a reduction relation (see (3), pp. 144ff.). In the
following theorem the three most important properties are given.

T4 a)Ve(z € Mp(CCM) — Ja'(a' € M(ACPM) A (z,2') € p)).
b) Va1 VaoVa!' ((z1,2') € p A (z2,2") € p = 21 = 22).
c) Vava' ({z,z') € pAz' € M(ACPM) — x € M(CCM)).

a) expresses — in model-theoretic formulation — that all basic concepts of CCM are
"transferred’ into basic concepts of ACPM. b) expresses that CCM is not 'more fun-
damental’ than ACPM: for every &' € M,(ACPM) for which there is an x; with
(z1,2') € p, there is only one such z;. In contrast, for every x € M,(CCM), there
may be several x' with (z,z’) € p. Finally, statement c) has the most substance, it
states that the fundamental law of CCM is derivable from the fundamental laws of
ACPM and from the reduction relation.

With the help of the reduction p one can now at least partially answer the question
when a mass measurement in the framework of CCM, which is represented by a
measurement model for mass x € I*, actually represents a measurement of the mass of
classical particle mechanics; namely, in any case, when there is an intended application
x' of ACPM, so that ' € M(ACPM) and (z,z') € p are true.

VI. Theoreticity

The question of testing the empirical claim of CCM led us to measurements and
these to the discussion of measurement models. The notion of measurement model
allows us to sharpen a distinction which was made first by Sneed in (2). Sneed points
out that it appears that in a theory 7" there may be a quantity — let us call it ¢ —
which leads to the following problem: Any measurement of ¢ is only possible if T is
already true. If there exists such a quantity, it is justified to say that this quantity
is theoretical (for T), because all measurements presuppose the theory T'. In other
words ¢ cannot be used ’directly’ to obtain ’observational propositions’ which might
confirm or refute 7'.

To make this idea more precise, we make two assumptions. First, we make the
assumption that every measurement of a quantity ¢ can be described as a measurement
model of some theory. Here, the term 'measurement model for measuring the quantity
q in the theory T’ is defined in an analogous way as we have just demonstrated for
the case of CCM and mass. Second, we make the assumption that there is a certain
hierarchy of theories.® Such a hierarchical order can be understood as follows: a theory

8This premise is potentially problematic. First, it is extremely vague, and second, one can raise
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T: lies below of theory T5 in the hierarchy of theories if theory T5 uses all terms 77,
while T} gets along with fewer terms than 75 (see (3), p. 60).
Using these two premises, the following criterion for 7T-theoreticity makes sense:

D11 A quantity ¢ of a theory T is called T-theoretical if and only if the following
holds:

1) there is a measurement model for ¢ in T'

2) there are no measurement models for ¢ in theories 7" that lie below of T" in the
hierarchy of theories.

D11) is certainly not quite an adequate specification of Sneed’s idea, because there
can be theories 77 and 7% such that g is Ti-theoretical and Ts-theoretical in the sense
of D11). It could be that the correctness of T; is independent of the correctness of T
and vice versa. In this case, ¢ would be neither T,- nor Ts-theoretical in the sense of
Sneed’s criterion. However, we shall disregard this difficulty in what follows and rely
solely on the specification D11). The solution of the problem to give a convincing,
watertight definition of the term ’T-theoretical’ seems to be still far away. Therefore,
we have to be satisfied with provisional explicationes.

Applying the criterion D11) to theory CCM, we obtain the following result: m
is C'C M-theoretical, but v is not. This is quite clear, because there is certainly no
theory in the hierarchy of theories before CC' M, which says something about mass
measurement, while there are of course kinematic ’pre-theories’ for CCM, in which
methods for velocity measurement — i.e. measurement models for velocity — can be
given.

VII. The problem of theoretical terms and the Ramsey version of the empirical
claim

The existence of theoretical quantities (or terms) leads us to the so-called ’problem
of theoretical terms’. This problem arises at least whenever a theory 7" has a T-
theoretical term ¢, and whenever, apart from 7', one has at one’s disposal only those
theories T” which lie below of T' in the hierarchy of theories, i.e. intuitively speaking,
whenever T lies ’at the forefront’ of scientific development. We want to consider this
problem here only by the example of CCM. Thus we assume in the following that,
apart from CCM, we can only resort to theories which lie below of CC'M in the
hierarchy!

The problem arises when we ask how to confirm the empirical claim*: I* C M. A
confirmation consists of course in the proof that some elements of I* — namely those
which one has investigated — are also models. One must check for each such z € I'*

reasonable doubts about whether the idea of a hierarchy does justice to the actual relations that
exist between theories. There is much to be said for the assumption that a definitive criterion for
"T-theoretical’ cannot be given until these relations have become clear. However, we are still far from
that.
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whether x € M is true, or in other words, we must check whether x € I* — x € M
is true. How can one check this? The answer already hinted at in Sec. II is that one
must, at first, find out how x looks like in a more precise way. That is, one must
determine exactly the individual components of z, i.e., P,{t1,t2},v, and m. In our
case we must determine whether 1,%2,v, and m can be measured. Now, however,
m is C'C' M-theoretical and any measurement of m already presupposes CCM. More
precisely, every measurement of m yields a measurement model for mass and this is,
according to D4), a model of CC M. Each measurement of the mass m in the system
x presupposes therefore that « is already a model. To check whether x is a model we
want to check first to measure the components of x, and only then find out whether
the components also fulfill the law of conservation of momentum. Thus we got into a
circle.

The circle runs, again briefly, as follows. To confirm I* C M we must confirm
for each x € I* whether z € M. To check this statement, i.e. z € I* — x € M, we
must determine the components of x by measurement. However, any measurement
of the theoretical quantity m presupposes that z is already a model. So, to check
z € I* - x € M, we must already presuppose that € M. So the check goes
nowhere.

This problem occurs not only in CCM, but in any theory containing theoretical
quantities. The reason for this problem lies simply in the definition of theoretical
quantities. If every measurement of a quantity presupposes the theory, then one cannot
use this quantity for a ’direct’ confirmation of the theory. One can use such a quantity
at best for theoretical calculations, in which connections are set up between ’directly
measurable’ quantities.

These considerations already show how one can come to a verifiable empirical
claim in spite of theoretical terms. One must formulate the claim differently, namely
in such a way that the theoretical terms play a different role in the claim. In the
empirical claim* the theoretical quantity m has exactly the same position as the non-
theoretical quantity v. Both appear as components of the models and of the intended
applications. Therefore, both must first be determined by measurement before we
confirm the claim. Since this is not possible for m without questioning the whole
verification, one must simply ’throw out’ m at a suitable place. The suitable place
here is the occurrence in I*, because for the description of the models we need m
in any case. We will therefore simply omit the function m in the description of the
intended applications and denote the resulting set by I. From the tuples of the form
(P, {t1,t2},JR",IR®,v,m) the symbol m is omitted. (We will also call the elements of
this set ’intented applications’.) However, an empirical claim of the form 'T C M’ then
becomes impossible, since the sets I and M are disjoint for purely formal reasons.

The idea how to formulate nevertheless an empirical claim in this situation goes
back to Ramsey. He suggested to bind the theoretical quantity, i.e. in this case the
quantity m, by an existential quantifier. Then, on the one hand, the quantity no longer
occurs ‘unprotected’, i.e. in such a way that it could be determined by measurement;
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on the other hand, however, it still occurs, namely in the form of a variable, and
can thus be used to formulate the law of conservation of momentum. The so-called
Ramsey-sentence arising by existential quantification over m has, for a single system
x = (P, {t1,t2},IRT,IR?,v) of I, the form

E'X((P, {tl,tz},]R"',IR3,v,X) € M)

Here, again for clarity, we do not use the symbol m but use a neutral symbol X
for a variable. The above formula expresses that there exists a function X which
can be added to the intended application (P, {t;,t>}, IR IR? v) so that the resulting
structure (P, {t,t2},IRT,IR? v, X) is a model. To express the entire empirical claim
of the theory in terms of a Ramsey-sentence, one need only quantify the above formula
over all systems (P, {t1,,},JR",IR? v) € I. This yields the following formula:

For every (P, {t1,t:},IRT, IR, v) € I there exists a X such that
<P, {tl, t2},[R.+,IR.3, v, X) € M.

Let us make this modification a little more precise. To do this, we must first introduce
a set of potential partial systems in which m does not occur. We begin by simply
omitting from the potential models the last component, the mass function. We denote
the resulting class of systems by M,,,, and the elements of M, we call partial potential
models. The argumentation of Sec. II, according to which I* C M, should hold, can
now be repeated with I instead of I* and My, instead of M,. Since here in the
systems only the theoretical quantity m was omitted, which cannot be measured
directly anyway, we can adopt the argumentation of Sec. IT without repeating it here.
The result is that I is a subset of M, which we cannot determine precisely, but only
‘paradigmatically’.

We summarize all this in a definition, also modifying somewhat the notion for
‘theory CCM:

D12 a) If M, is defined according to D2), let
Mpp = {<P7 {tla tz},]I{Jr,]I{S, ’U) | 3X(<Pv {tla t2}7IR'+7IR'37 v, X> € Mp)}
b) By the theory CCM we mean the quadruple (M, M, M,,,I), where I is the
pragmatic part of CC'M as explicated above.
c¢) The empirical claim of CCM is the proposition
'For every (P, {t1,t2},IRT,IR?,v) € I, there exists an X such that
<Pa {tla t2}7IR+7IR37 v, X> e M.

When checking the empirical claim defined according to c), circles do no occur any-
more. To check the statement 'z € I — IX((x, X) € M)’, the theoretical quantity
m, which originally bothered us, does not need to be measured any more. It does not
occur in x any more. Among the data or components, which are measured in a real
system, the theoretical quantity does not occur any more. At this point the circle
described earlier is broken.

13



VIII. Ramsey eliminability

A much discussed question in connection with theoretical terms is, whether these
are 'really necessary’. The analysis of concrete calculations, forecasts, measurements,
as well as results from logic (e.g. Craig’s theorem) suggest that in fact theoretical
terms are in principle superfluous. In the following we want to show by the example
of CCM what Ramsey-eliminability exactly means, and that in CCM the mass is
indeed Ramsey-eliminable.

Theoretical quantities are in principle not necessary if they are Ramsey-eliminable.
And Ramsey-eliminability means that the class of partial potential models which can
be added to models can be formally described without the help of theoretical terms.
If this can be done, one can characterize a subclass M* of M,, without theoretical
terms, which contains exactly all partial potential models which can be completed to
models. The empirical claim of D12-c) is then equivalent to the claim I C M*, and
in this claim no theoretical quantities occur.

For a more precise and general understanding we introduce the notion of a reduct.
A partial potential model z’ is the reduct of a potential model z, if 2’ arises from x by
omitting the theoretical term m in z. For a set X of potential models, let r(X) denote
the set of all reducts of models, i.e., the set of all partial potential models arising from
models by omitting m. We say that a theory T' of the form (M, M, M,,,I) has no
empirical content if r(M) = M,p,, i.e. if every partial potential model is a reduct of
a model. In this case the empirical claim of T is logically true, no matter what the
intended applications are. One need only remark that when using the notion of reduct,
the empirical claim simply has the form: I C r(X). Finally, Ramsey-eliminability of
the theoretical quantity m means that there is a set M* C M, which can be formally
characterized without the aid of theoretical terms M* = r(M). It is important to note
that in CCM, M* is determined without the theoretical quantity m. This means
that, with C'C' M one must define M* by a set-theoretic predicate in which m neither
occurs nor is used. If we were to commit ourselves only to the requirement of the non-
occurrence of m in the description of M*, this would be insufficient, for one could
bring back and use m in quantified form through the back door. One could define M*
as r(M), using m in quantified form, of course. The requirement that m is not used at
all, can be made more precise by the syntactic requirement that only P, {¢;,¢2}, and
v occur as free variables in the formula that determines M and that quantification is
only done via 'objects of the basic sets’ in this formula. Objects of the basic sets here
are the elements of the sets P, {t;,t2}, IRT IR?.

D13 a) z' is the reduct of z (z' = r(z)) iff ' = (P, {t1,t2}, RT,IR? v) € M,,
and z = (P, {t1,t2}, RT,IR? v,m) € M,.
b) For X C My, let r(X) := {2’ € M, | Jz(z € X Az’ =r(z))}.
c) CCM has no empirical content iff r(M) = Mp,.
d) m is Ramsey-eliminable in CC M iff there is a formula with exactly
three free variables a, b, ¢, such that:
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1) for all P, {t1,ta},v: if CVyp (P, {t1,t2},v), then
<P, {tl,tg}, ]R"‘,]R3,v> € Mpp

2) CVp.c(P,{t1,t2},v) contains only quantifiers over elements of
P’ {tlatQ}a IR+,IR3

3) (P {t1, 12}, IR IR?, v) | CV (P, {t1,t2},0) } = r(M).

The set defined by CVg (P, {t1,t2},v) in d.3) is (and was above) called M*.

T5 a) If CCM has no empirical content, then the empirical claim of CCM is
logically true.

T6 a) CCM has empirical content.
b) Mass is Ramsey-eliminable in CC M.

IX. Constraints

CCM in the form presented so far is a rather simple theory. Even as a theory of mass
measurement, CC'M can be used only in a limited way. In general, one would like to
determine also masses of particles which are not by chance found in systems described
by CCM. To measure the mass of a given particle in the framework of CC'M, an
experiment with this and other particles must be carried out. One has to construct
measurement models for mass of CCM. The claim that one would have measured
the mass of this particle with a measurement model for mass, can be maintained,
however, only if we explicitly postulate that a mass value is independent of using
a special method to measure mass. This would mean that the mass of the particle
under discussion would also be the same in other situations. Only then we would
have a theory in which the mass of any particle could be described and measured.
A ‘system-independence’ would say that a particle always has the same mass, no
matter in what system it will be found or measured. We want to extend CCM by
corresponding postulates, whereby a substantial tightening of the empirical content
occurs. The formal component, which must be added for technical reasons, is called a
‘constraint’, because it describes kinds of cross-connections between different models
or potential models.

We say that a set of potential models X satisfies the constaint for mass, if parti-
cles occurring together in two potential models of X will have the same mass. This
means that the mass functions occurring in both systems take the same values for
both particles. The constraint of CCM is then given by the set of all such sets X
that satisfy the mass condition just described.

D14 a) X satisfies the constraint for m iff X C M, and for all z,y € X and for
all p: if p € P* N PY, then m®(p) = m¥(p).

(b) The constraint Q) for CCM is defined by
@ = {X|X satisfies the constraint for m}.

The empirical claim can then be extended to include the constraint. It reads:
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AXT=r(X)ANXeQANXCM).
X. Predictions

An important function of empirical theories is to make unambiguous predictions.
In this respect, CC M is a completely useless theory. The only conceivable prognosis
would concern the velocities after a collision. However, these are, as already mentioned
in Sec. III, not unambiguously determinable in CCM. And this means: unambigu-
ously prediction is impossible:

T7 There is no measurement model of CC M for measuring velocities after the
collision.

We have already pointed out earlier that CC M is an extremely meager theory com-
pared to CPM. This intuitive judgment can now be specified in such a way that at
least the following points could be mentioned, which show the greater strength and
richness of the CPM. First, CCM is reducible to the CPM — more precisely: to
the specialization AC PM — while a reduction in the other direction is not possible.
Second, CC'M alone does not allow for any unambiguous predictions at all. CPM, on
the other hand, with its many specializations, leads to many and extremely fruitful
predictions. One of the reasons for the latter is that many special laws can be built
into the CPM, which then create a whole network of relationships. However, this is
an aspect that will not be discussed further in this paper.

Appendix

Proof of T1:

'=’: Suppose there is a u € IR® with the property in question. Then for any v =
Ti<i<n A0; with A; >0 (1 <i<n):v®u = Ti<i<n Aiv; @u > 0. Then v cannot be
zero and (1) consequently cannot be positively solvable. ’<’: see [4] Corollary 1A.
Proof of T2:

’a) = b)’: Without restriction of generality, let ¥1<j<i p;v; =0, u; >0 (1< j<k)
and k£ < n. Then it holds: Elgjgk (m]‘ + /Lj)’l}j + EkJrlSan m;v; =
Yi<i<n Miv; + Ti<j<k pjv; = 0. Thus (1) is not uniquely solvable in the positive.
'(b) <= (a)’: Suppose (1) is not uniquely positive solvable. Then there exist m; > 0,
m; > 0 (1 <i < n) with Xi<j<p mv; = 0, Xi<i<n mjv; = 0, and no A € IR with
m; = Am; (1 < i < n). It is clear that there exists a k with my/m}, > m;/m] for
i =1,...,n. From this follows:
0 = (mr/m},)E1<i<n Miv; — X1<i<nm;v;

= X1 cign (e /ml)m} — mo)os

= Si<i<nizk (Mg /mi)mi — m;)v;.
We set p; := (my/mj,)m; — m;.
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It is clear that p; > 0 (1 < i < m,i # k), and because of the nonexistence of the
proportionality factor A, at least one u; > 0. Consequently, there is a J C {1,...n}
with J # {1, ...,n} such that p; > 0 for all j € J and Xje5 pv; = 0.

Proof of T3:

(1) is uniquely positive solvable exactly when the dimension of the manifold L is
equal to 1: dim Ly = 1. Since Ly is an open subset of ker ¢, dim Ly = dim ker ¢
holds. IL.e.
(1) is uniquely positive solvable exactly when dim ker ¢ = 1. Because of the formula
ker ¢ +rg ¢ =n (linear algebra) this is exactly the case when
rg ¢ =n — 1. Because of 0 < rg ¢ < 3 and n > 2 the assertion follows.
Proof of T4:
(a) and (b) are trivial.
(c): Because of condition D8.3), all forces cancel in pairs so that: X,epienv f(p,t,7) =0
forallt eT.
Because of D7.7) then also ¥,ecp m(p)D?s(p,t) = 0, and it follows:
0= [ Spep m(p)D?s(p,t) dt = Spep m(p) [;” Du(p.t) dt =

Ypep m(p)(v(p,ta) — v(p,t1))-
Proof of T5 and T6:
T5 and T6a are trivial. T6.b) is clear because of Theorem T1.
Proof of T7:
The question is whether in equation X,cp m(p)v(p,t1) = Z,ep m(p)v(p2), for all
p € P, the value v(p, t2) can be uniquely determined by the remaining values. As one
can easily reflect upon, this leads to the question whether in an equation of the form
miv1 + Mavs = M1z + maxa (Mg, v;,2; € IR, 4 = 1,2) the values of 1,22 can be
uniquely determined by the remaining values. However, it is clear this is not the case
for all choices of my > 0,mo > 0 and vy, vs.
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