
This paper was published in: Salzburger Geographische Arbeiten, Band 48, S. 111 -
120, Salzburg 2012. (ESSA Congress 2012)

How Can We Simulate a Society?

Wolfgang Balzer LMU, Karl R. Brendel and Solveig Hofmann

Abstract We introduce a notion of a simulation system for societies which is similar
to the notion of theory found in the literature about empirical theories. In a theory
the data are produced empirically whereas in pure simulation systems the data are all
hand made or generated by a computer. We describe how a series of simulations can
be generated automatically by a list of systematically constructed sets of constants.

I Introduction

A society, as we all know, is a very complex system; also it is partially non-transparent.
In the natural sciences data are found by experiment and by the analysis of a real
system. This does not really work for the humanities because there are often moral or
economical problems. The method of simulation can avoid these problems for data.
But at what cost?

'

&

$

%

'

&

$

%
'

&

$

%

�
�

�
�

�
�

�
�

a real
society

scientists
working on
a theory

making

constructors
for a
simulation

making

a
simulation-
system

describes and
partially explains

investigates

a theory
of society + sis similar to

?

+s

Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�
��

? ?

Fig. 1 Social theory vs. simulation: an overview

In a simulation we intend to build a system which is { in some way { similar to

1



some societies we want to understand. It is clear that, today simulation programs for
`societies' are rather simple and rather small, in relation to the complexity of a real
society. Nevertheless, computer simulation for social systems is a success story. In the
1970s, the �rst attempts by Axelrod, Holland, Schelling and others opened the door.
In a collection Arti�cal Societies (GILBERT & CONTE, 1995), papers are written
with the goal to improve our understanding of societies with the help of computers.
Today we have world wide conferences, like WCSS and SCS, journals like JASSS, and
many articles and books.1

There are now many simulations which investigate social phenomena, but the
understanding of societies improves rather slow. The big problem is `the' structure
of one society and the structure of a class of societies, as far as we can grasp it. A
part of this problem is to delineate the boundary or closure of a system at the level of
reality and at the level of a model. In sociology there is a number of rather di�erent
approaches, and also the methodologies are divers. We approach simulation systems
here in a structuralistic manner, in a way similar to scienti�c theories as described
in many works (BALZER et al., 1987), (BALZER et al., 2000), (DIEDERICH et al.,
1989), (DIEDERICH et al., 1994).

In one area of philosophy of science (STEGM�ULLER, 1976) a theory is made by
a group of scientists with the goal of describing and explaining an intended domain
of real systems from real world. This implies to clarify which parts, dimensions, prop-
erties, aspects of a real system are necessary in a description and explanation. In
other words, how can the scientists formulate the closure of a de�nitive system? In a
similar way a simulation system is made by a group of researchers which investigate
an intended domain of real societies. At this moment it is clear that we cannot claim
to describe, let alone explain a real society, even partially.

2 Theory and Simulation System

A theory has several parts. On the elementary level, a theory consists of a list of
hypotheses, a list of data, a class of models, a set of intended applications, and of an
approximation apparatus approx. An intended application is a real system, which had
been, or will be, investigated by a group of scientists. This implies that the scientists
delineate the boundaries of a real system. In the following we pick one model, and
we suppose that this model is a model for an intended application.2 Data and models
are described by sets of sentences of the theory. Metaphorically speaking, the data
are an anchor for keeping the hypotheses fastened to the ground. In this way, we can
separate successful intended applications from failures.

In the same way, a simulation system has a (computer) program (a list of program
rules), a list of input data, a class of (computer) runs { relative to a given computer
or a computer system {, and a domain of successful runs, and a statistical apparatus.
In addition to a theory, a simulation system has a class of outputs. Using the input
data, a program run produces new facts that did not exist before the program start. A

1In our group, for instance, there are German books: (BRENDEL, 2010), (HOFMANN, 2009),
(PITZ, 2000).

2Details are found, e.g. in (BALZER et al., 1987), Chap. 2.

2



run is normally described by a list of state transitions, so that a state of the program
will be transformed into `the next' state, by a program rule. Graphically, a run can
be represented by states and by changes of states.

As a program can involve rules using random elements, newly produced facts
cannot be predicted, This is only approximately true because in a real computer all
the random numbers are determined by recursive functions. For pratical uses, it is
therefore often necessary to repeat the program several times starting with di�erent
random seeds. In the following, we distinguish between runs with repetition and simple

runs (or just runs). In a run with repetition, the input data are used several times. In
other words, a simple run can contain random elements but the corresponding results
are not analysed statistically. Normally, the statistical evaluations can be programmed
by an `outer' loop. We skip this aspect here for reasons of space and simplicity.

In one run we distinguish between new facts produced by the program, which can
be deleted before the run stops (which we call dynamic facts), and all other new facts
which we call results (relative to a run).

In this formulation a hypothesis corresponds precisely to a program, i.e. to a list
of program rules, and the data of the theory correspond to the input data of the
simulation system. The notion of deduction in a theory is important. In a theory, a
sentence can be inferred from the hypotheses and the data. Finally, the successful
applications of the theory corresponds to the successful runs of a simulation system.
In a similar way a term (or a formula or a sentence) is deduced in a simulation system,
if this term is generated by the program rules and the input data. We say that a run
is successful if the output of the run corresponds to results, which are intended by
the programmers. In this way, we can say that successful applications of the theory
correspond to the successful runs of a simulation systems.

Unfortunately, the notion of a model has three di�erent meanings. In logics, a
model is a complex set, in computer sciences { including social simulations { a model
is a representation or a `picture' of a `target' system (which often is a real system)
and in normal speech, a model is a `target' system which is represented by a picture
or by other means. A further complication comes from `micro', `meso' and `macro'
levels, and the corresponding problem of scale. `We' { the authors { follow the �rst
characterization mentioned above. On the one hand, we prefer viewing models as set-
theoretical entities, because they can be precisely be described in a human way (if a
description is not super-formalized). On the other hand, we also favour the idea that
the data of the facts corresponding to a target system should be stored separately. We
use here the notion of model in the logical meaning, but only if the data are stored
separately. We have no clear view about the problem of scale reduction in the case of
a speci�c society; we are open here.

A theory (see Figure 2 at the left side) describes and explains a given society. The
hypotheses and the data are interpreted in a (set-theoretic) model which represents
or `depicts' a real society. In our account the data of a theory are split into subsets.
One subset of data `belongs' to one real system, so that a group of scientists intend
to investigate this system, and the corresponding data. Often a data item belongs to

3



two di�erent systems at the same time.3 For instance, in one period a person can live
in two societies `at the same time', so one data item is an element of several data sets.

'

&

$

%

'

&

$

%'

&

$

%

�
�

�
�

�
�

�
�

?

-
-

?

6

researchers

making a
theory
consisting of

simulators

making a
simulation system
consisting of

the program

input data

+

generate a

run

computer

results
?

is similar to

is similar to

is similar to
hypotheses

data

+

are valid
in a

model

a society

which
successfully
represents

which
successfully
simulates

? ?

@
@
@
@R

�
�
�
��	

Fig. 2 Social theory vs. simulation: in detail

In a structurally similar way a simulation system (see Figure 2 at the right side)
generates a run. The program and the input data produce many transitions which
altogether form the run. After the program is started and the input data are loaded,
new facts and results will be generated. During the computation, many results are
produced and stored in newly generated �les. The claim of describing or even explain-
ing a real society is very weak. The content of such a claim amounts to the program,
the input data and the newly generated results.

The interesting point here is the similarity between the theory and the simula-
tion system. In the centre of Figure 2 we see the relation of similarity between the
hypotheses and the program. This kind of similarity can be investigated by syntac-
tic and semantic tools, like parsers and transation manuals, e.g. (CHOMSKY, 1965).
Whether data and input data are similar to each other can be clari�ed by formal anal-
ysis, like set-theoretical tools or topology (BOURBAKI, 1961), (BOURBAKI, 2004),
and semantic comparisons (R-Project). Here it is important to compare sets of data
(TVERSKY, 1977). If we try, for instance, to compare only the facts `Homer loves
Jane' and `Homer hates Bob' we will not make much progress. We should have sets
of facts to go on, and even better, we should use some structural aspects for instance

3See (BALZER et al., 1987, Chap. 2).

4



a metric or some hypotheses, like `X loves Y, then not (X hates Y)'. From similarity
of sets and structures of data we can advance to similarity of sets and structures of
numbers, to sets of sets of numbers (and so on), by using the many formal meth-
ods in mathematics, statistics and computer science (BALZER & ZOUBEK, 1995),
(BOURBAKI, 1961), (R-Project). Additionally, similarity relations have components
at the practical level. It is possible to bind hypotheses and program rules on social
practices, see for instance (BALZER & TUOMELA, 2001).

Similarity between a model and a run is more di�cult. A model is a set-theoretical
entity; a run is a computer process. A model has no active component, whereas in a
run often really new `things' emerge or are created. However, such new entities also
exist in a model. They are just not formulated explicitly. Derivable facts exist in a
model, whether they are explicitly described or not. A set-theoretical model consists
of base sets and relations so that a relation can be `built' from the elements of the base
sets (BOURBAKI, 2004, Chap. IV). A run can be seen as an ordered list of states,
and each state as a collection of data. We can describe a given state as a database:
a list of facts and/or rules. In a run, and relative to a given state of the run, new
dynamic facts and results are generated { and sometimes deleted as well. In this way,
we could de�ne all the facts of a given state and use a one-to-one function to relate
these facts to elements of the base sets of the relations of a model. Such elements can
be described either by proper names or by atomic sentences `belonging' to a modelled
system.

Another problem is time. Is the linear order of the states of the run always iso-
morphic to a time structure which { in most cases { is a submodel of the model? We
are not sure whether such a �t is always possible. Nevertheless, for a given simulation
program this should be possible.

The most di�cult problem of similarity comes from the non-constructive parts
of a model. In a model it is not always possible to calculate a fact from other facts.
Sometimes, the hypotheses are too strong: they `escape' the deterministic methods.
For example, in classical gravitation mechanics we cannot always solve the equations
in a deterministic way. In a run, the computer deterministically calculates all the
input data, the dynamic facts and the results { even if we use random numbers. The
only solution that we can see is to use the notion of approximation of structures, see
for instance (BALZER et al., 1987, Chap. 7). Granted the problem of �t of slices of
time, we can assign the facts of one state bijectively to elements of a proper submodel
of the time structure that is embedded in the model.

3 Data versus Input Data

The problem for a simulation system is data. In an empirical theory the data are
measured by experiments, by surveys or by other scienti�c methods. Whether it is
di�cult or not, the researchers have to use those data which are obtained from a
given real system. In social domains, some possible ways of getting such data are not
allowed by operative moral system in force. If a method of determination is morally

5



possible, the method may still be too expensive.4

A further { and more `normal' { problem is that often a study needs many data
from one real system in order to verify even a weak claim. This can happen in many
theories. In such cases a real system is only partially described and explained by a
model. This is even more true for simulation systems. In our case, a simulation system
can represent and describe only some few abstract and very small parts of a society.

For these reasons it makes sense to use the method of simulation. A `pure' com-
puter simulation uses only constructed or invented input data. Nevertheless, even in
these pure cases this method makes sense. In other areas, simulation methods are
used to enrich the existing empirical theories at hand, like in biology, in physics or
in neuroscience. If a model seems to represent a real system, but some data are not
available, it is often not di�cult to produce a simulation program which supports the
given model. The mixed, hybrid approaches in other more practical areas, like gaming
and computer games, are of course very relevant. This mixed strategy is also used in
social studies described, for instance, in the journal JASSS. We focus here on the pure
case for two reasons. First, the constructive part of our paper would get complex, and
of course lengthly, if we also describe mixed cases. Second, we have no means to get
empirical data, see footnote 6.

In the structuralistic theory of science it is crucial to look at sets of real systems
(intended applications) and sets of models to understand the content of a theory. It
is not su�cient to investigate just one system and the corresponding model because
the theoretical content of a theory would be missed. The content is `symbiotically'
related to the boundaries of the set of successful applications. The same holds for the
boundaries of successful models.

This theme becomes even more central in pure simulation studies. For a simulation
project it is not su�cient to produce one run of the program { whether the program
executes simple runs or runs with repetitions. If one run is done { with or without
repetitions { we should go for a new run in which a di�erent set of input data is
used to execute this new, di�erent run. In other words, we use sets of di�erent input
data so that each new input starts a new run. Many examples can be found, e.g.
(FENT et at., 2010), (PICASCIA & PAOLUCCI, 2010), (TAKAHASHI et al., 2010).
Realistically speaking, we can say that one set of input data `is', or corresponds, to
one `concrete' { real or only possible { system. In our case of societies, we use many
di�erent sets of input data so that each set of input data generates a `version' of a
society, which can be more or less far away from a real, intended society. Formulated
di�erently, one run corresponds to one model, and a model and a run both correspond
to a possible world, and at the level of reality, both the model and the run can be
similar to the same real system { here: similar to the same society.

In this approach variability is essential. One run arises from one set of data, and
the program rules. In addition, one run corresponds to a version of a society in one
way or another. Therefore, a set of input data corresponds to a version of a society as
well. Now the point is that di�erent input data and the arising runs can correspond to
the same real society. As a society is a complex entity it was { at least to date { not

4Alas, the real societies do not spend much money for social sciences.

6



possible to gather and to construct just one set of input data for one society. Currently,
we apply the strategy of using a whole set of input data and the corresponding runs
which represents one real society.

In this situation, we want to distinguish between a set of runs that makes sense
`for us' and a set of runs which represents nonsense societies, or more bizarre systems.
We want to clarify this distinction and the corresponding boundary. In other words,
we want to come closer to the central aspect of a society, to describe `it's closure'. For
this goal, we use a notion of paradigmatic application introduced by (KUHN, 1970),
which we describe in a structuralist way. This paradigmatic method has also been
used in the domain of concept formation (G�ARDENFORS, 1990).

This method can be described in an abstract way. A set X has a layered set
of surroundings such that all surroundings are supersets of X. In a application of
the paradigmatic method, X is a small set of examples that forms the basis of a
topology. The paradigmatic method distinguishes a special surrounding E ofX, which
is maximal to a certain extent. This surrounding represents the set of all elements that
are distinguished in this way. We depict an oval-shaped surrounding E1 in Figure 3a)
and a star-shaped surrounding E2 in Figure 3b). The bases of these two surroundoings
consist of the few points depicted within the surroundings. In b) we can see that the
boundary of E2 stems from a Voronoi tesselation (OKABE, 1992).

a) b)

'

&

$

%
E1

q q
q q q

q
q q q q

q q q q
q qqqq
q q

E2

��
��

�
��

@@��
��

��P
PPP

A
AA�

��PP
PPA
AA

Fig. 3 Two forms of paradigmatic sets

In our applications is X a set of sets of input data. In Figure 3 we depict a set of
possible sets of input data as a rectangle, some few, `real' sets of input data (black
points), and a surrounding in which points lying inside the surrounding. If we have
a theory at hand, all the real sets of input data can be assigned to the intended
applications of the theory. An intended application of a theory is successful if the
hypotheses and the data �t into (or are approximately valid in) a corresponding
model. In other words is an intended application successful if it can be embedded into
a model. An unsuccessful application cannot be embedded in any model. If we link
models to runs, and input data to intended applications, we can introduce successful
runs and successful input data. A set of input data is successful if this set is similar
to an intended application of the theory. We can explicate this similarity as follows.
One can transform an application to a list of atomic sentences (`intended list'). The

7



same can happen for sets of results. Given a program, we can execute a run from a
set of input data and obtain a set of results. If the input data are actually elements
of the intended list then the set of input data is successful. In other words, we can
say that a run is successful if both, the input data and the results, are found in an
intended list stemming from a real intended application.

These notions can be extended to all sets (`potential' sets) lying in a given sur-
rounding. A run executed by a set of potential input data is a potentially successful

run. In other words, a boundary is introduced, and in this sense `given', so that all
potentially successful runs (and sets of input data) lies inside this boundary, and all
other runs are found `at the other side' of the boundary. In this way we can link
successful run to successful models and successful sets of input data to successful in-
tended applications. If we replace empirical data by constructed or generated input
data, we move from a theory to a simulation system. The process of approximation
does not change the picture.

Finally, it is important to work with complete systems of input data so that all
possibilities can be found. We think this can only be done by using the strategy of
starting with an idealized approach and gradually specializing and enlarging a simu-
lation programm.5

4 The Methodology of Variation

We describe in an abstract way a systematic strategy of executing many di�erent runs
for di�erent input data.6 Very abstractly speaking this method can be seen a as vari-
ant of sensitivity analysis used in sociology (DEIF, 1986), (CHATTOE et al., 2000).
One can vary a parameter or a hypothesis and see whether and how this change leads
to di�erent results. The method we describe here only alter parameters. Some exam-
ples are: (MAKAROV & BAKHTIZIN, 2010), (KAMINSKI, 2010), (KLINGERT &
MEYER, 2010). If we change a hypothesis we do this only by modifying a parameter
that is a part of the description of the hypothesis.

We assume that the main program for a simulation system is given. In Figure 4
we depict one run of the main program.

Starting the main �le the essential constants for one run are loaded from the �le

for constants.7 We call such a list a system of world constants (for one society). This
main �le uses the list of world constants to create a new set of input data with the
help of the �le for creating data { which is also loaded. The new input are stored in
a newly generated �le stored data, and are then loaded into the main �le. The input
data are now used. The essential part of the programm then executes these rules {
in our case the rules for simulation a society. In this part, many results are stored in
di�erent �les results1, ..., resultsN.

When the main program uses probability elements another loop is added in which
the program depicted in Figure 3 is repeated several times. In each repetition the

5See (BALZER et al., 1987, Chap. IV and VIII.
6See www.munich-simulation-group.org for an example program.
7In Netlogo, for instance, these constants must be entered in a formated, standardized list, see

the website http://ccl.northwestern.edu/netlogo/ .

8



same input data are used.'

&

$

%

�le for
constants

start

6r
� �
?

-
6

� �
?

�le for
creating data

?� �6
- -

6

� �
?

?

-

?

�le of
rules

the main �le
the main �le

stored
data results1 resultsN

qq q

Fig. 4 Workow of the main program

Now, the new feature is to add an uppermost world-loop in which di�erent arti�cial
societies { worlds { are executed. In Figure 4, a world-loop is depicted which starts
at the left side of the workow. Starting the world-loop, a �le autogen is loaded, by
which a series of runs is automatically generated. A data item in autogen is a kind of
prescription to generate a series of other data (see below). Each world has a number
i, i = 1; :::; k, a `name' w(i), and a system of world constants stored in the �le of

constants enabling a main run to start (see Figure 3 and 4). The code for the world-
loop generates a rather long list of systems of world constants. We store this list in a
�le universal list for worlds. One item, one system of constants for one world w(i), is
picked from this list, is `unpacked', and the data are written in a newly generated �le
stored constants for w(i) which we have seen already in Figure 3 (but there without
relativization of a special world).

In each step i of the world-loop, i starts a run of one world, one society. In the
main program the contents of the �le for constants is replaced. The system of world
constants used in step i � 1 is deleted and the `next' item from the universal list is
picked, transformed into a system of world constants for w(i) and written to the �le

for constants. Additionally, the corresponding input data generated in step i� 1 are
deleted, this must be done carefully. Then the `new' main program starts in the same
way as in Figure 3. Some �les used in the main program of a world-loop must be
indexed by the name w(i) of the number i for the world which is just executed.

Finally we describe the code (see note 10) which generates the set of systems of
world constants which is to put in the universal list for worlds. In the simplest case,
a system of world constants is a list of components dk, k = 1; :::; s, where the number
s of constants from a system of world constants is the same in all systems of world
constants. One component dk can be a number � or a pair [bbelow; bupper] of numbers

9



which represents an interval, i.e. bbelow; bupper are the boundaries, bbelow � bupper. A
system of world constants is then a list [d1; :::; ds]. We transform this nested list into
a at list by deleting the brackets in pairs of the form [bbelow; bupper]. Such a at list
[c1; :::; cr], s � r, can be generated as follows.

For each index j, j � r, we �nd a domainj in a pre-built autogen. domainj is
just a list of ordered numbers. For instance, if we use a system of world constants
of the form [�1; [�2; �3]; �4; [�5; �6]] we use 6 domainsj , j = 1; :::; 6. domain3, for
instant, has the form [�1

3
; :::; �u3

3
]. Mathematically formulated, we transform the lists

domainj into sets domain�j , we take the product domain�
1
� :::�domain�r , and trans-

form this product into a list of elements of this product. To generate such a list
by a computer program we need a r-fold recursion.8 For example, if we have 3 do-
mains for constants: [�1; �2; �3]; [�1; �2; �3; �4]; [1], a list of all lists has the form
[[�1; �1; 1]; [�1; �2; 1]; [�1; �3; 1]; [�1; �4; 1]; [�2; �1; 1]; :::]. One should roughly es-
timate the number of the systems of world constants and consider the speci�cations
of the computer used for the simulation runs to ensure that the computation does not
end with a stack overow.

After this uppermost loop has �nished, we can analyse the results in the usual way.
Additionally, we can use statistical methods to compare di�erent simulated societies.
In this way, we can produce a tesselation, and pick one class of runs (or a few such
classes) which we think are successful. `For us', such runs correspond to societies. We
can state boundaries so that the constants lie in areas where the results represent
successful runs.

5 Conclusion

We look at simulation systems in the same way as we look at empirical theories. The
main di�erence of these two entities is that in a pure simulation system the data
can only be generated arti�cially whereas the data for a theory { in the pure case {
exist always before the theory is applied. In this paper, we describe only the `extreme',
idealized cases. The extreme case could be embedded into `normal' cases, where mixed,
hybrid data are used in simulations and/or in empirical theories. However, this takes
some additional e�ort. Our approach emphasizes the distinction between sets of data
and sets of sets of data. In a simulation that uses purely generated data, the input
data in one run are only used as a kind of variables.

We found four aspects of similarity between theories and simulation systems: sim-
ilarity of 1) hypotheses and program rules, 2) data and input data, 3) a model and
a run, and 4) the success of an intended application (and the corresponding models)
and the success of a run. We claimed that a run is successful, if the three �rst aspects
or criteria of similarity are met, and if furthermore the simulation results of the run
were intended by the programmers.

8In our group a simple rule, the `Urban-rule', is programmed under PROLOG, see www.munich-
simlation-group.org.

10



References

BALZER, W., C. U. MOULINES, J. D. SNEED, 1987: An Architectonic for Science,
Dordrecht.

BALZER, W., C. U. MOULINES, J. D. SNEED, eds. 2000: Structuralist Knowledge
Representation, Amsterdam - Atlanta.

BALZER, W. & R. TUOMELA, 2001: Social Institutions, Norms and Practices. In:
R. Conte, C. Dellarocas, eds.: Social Order in Multiagent Systems, Boston, pp. 161-
180.

BALZER, W. & G. ZOUBEK, 1995: On the Comparison of Approximate Empirical
Claims. In: W: E. Herfel et al., eds., Theories and Models in Scienti�c Processes,
Poznan Studies 44, pp. 327-344.

BOURBAKI, N. 1961: Topology, Paris.

BOURBAKI, N. 2004: Theory of Sets, Berlin etc. (1. edition 1968).

BRENDEL, K. R. 2010: Parallele oder sequentielle Simulationsmethode? Implemen-
tierung und Vergleich anhand eines Multi-Agenten-Modells der Sozialwissenschaft,
Verlag Utz, M�unchen.

CHATTOE, E., N. J. SAAM & M. M�OHRING, 2000: Sensitivity Analysis in the So-
cial Sciences: Problems and Prospects. In: R. Suleiman, K.G. Troitzsch, N. Gilbert,
eds.: Tools and Techniques for Social Science Simulation, pp. 243 -273.

CHOMSKY, N., 1965: Aspects of Theory of Syntax. MIT Press. Cambridge Mass.

DEIF, A. S. 1986: Sensitivity Analysis in Linear Systems, Springer, Berlin.

DIEDERICH, W., A. IBARRA, T. MORMANN, 1989: Bibliography of Structural-
ism. In Erkenntnis 30, pp. 387-407.

DIEDERICH, W., A. IBARRA, T. MORMANN, 1994: Bibliography of Structural-
ism. In Erkenntnis 41, pp. 403-418.

ERNST, A. & S. KUHN, eds. 2010: Proceedings of the 3rd World Congress on Social
Simulation WCSS2010 (CD-ROM), Kassel, Germany: Center for Environmental Sys-
tems Research, University Kassel.

FENT, T., B. DIAZ & A. PRSKAWETZ, 2010: Family Policies and low Fertility: How
does the Social Network inuence the Impact of Policies. In: Ernst A. & S. Kuhn,
eds.

G�ARDENFORS, P. 1990: Induction, Conceptual Spaces and AI, Philosophy of Sci-
ence 57, pp.78 - 95.

GILBERT, G.N. & R. CONTE 1995: Arti�cial Societies: The Computer Simulation
of Social Life, London.

HOFMANN, S. 2009: Dynamik sozialer Praktiken, Wiesbaden, 2009.

KAMINSKI, B., M. LATEK, M. Jakubczyk, 2010: Measuring the Impact of Work-
force Sickness on Economic Output Controlling for Technology and Epidemiology. In:
Ernst A. & S. Kuhn, eds.

KLINGERT, F. & M. Meyer, 2010: Multi-Agent-Simulation of Prediction Markets:

11



Does Manipulation Matter using Zero-Intelligence Traders? In: Ernst A. & S. Kuhn,
eds.

KUHN, T. 1970: The Structure of Scienti�c Revolutions, Chicago.

MAKAROV, V. L. & A. R. BAKHTIZIN, 2010: Agent-Based model for simulation
of terrorism in Russia's Causasus. In: Ernst A. & S. Kuhn, eds.

OKABE, A., B. BOOTS, K. SUGIHARA 1992: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, New York.

PICASCIA, S. & M. PAOLUCCI, 2010: Di�usion of culture and the "PageRage ef-
fect". In: Ernst A. & S. Kuh, eds.

PITZ, T. 2000: Anwendung Genetischer Algorithmen auf Handlungsb�aume in Multi-
agentensysteme zur Simulation sozialen Handelns, Verlag P. Lang, Frankfurt.

R-PROJECT: www.R-project.org.

STEGM�ULLER, W. 1976: The Structure and Dynamics of Theories, Springer, New
York.

TAKAHASHI, H., S. Takahashi, T. Terano, 2010: Analyzing the inuence of funda-
mental indexation of �nancial markets through agent-based modeling. In: Ernst A. &
S. Kuhn, eds.

Tversky, A. 1977: Features of Similarity. In Psychological Review 84, pp. 327 - 52.

WILENSKY, U. 1999: NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Con-
nected Learning and Computer-Based Modeling, Northwestern University, Evanston,
IL.

12


