
This paper was delivered at the 3rd World Congress on Social Simulation WCSS2010, Ernst
A. & Kuhn S. (eds.), Proceedings of the 3rd World Congress on Social Simulation WCSS2010
(CD-ROM), Kassel, Germany, Center of Environmental Systems Research, University of
Kassel.

A Simple Frame for Arti�cial Societies

Wolfgang Balzer and Karl R. Brendel and Solveig Hofmann

University of Munich
Munich Simulation Group
balzer@lrz.uni-muenchen.de,
karl.r.brendel@t-online.de,

hofmannsol@aol.com

Abstract. We present a framework for Arti�cial Societies (AS) in a Prolog pro-

gramming environment and sketch four modules. The language module consists of

a programming language, the main program, that simulates an AS, and the rules

for each idealized actor, that are present within the main program. The subsystems

module programs relations in special, social groups, the basic module programs basic

non-linguistic entities and relations concerning all actors, and the computer module

the structural processes of the actors. We describe in some detail, how we connect

the programming language for an AS with the `languages' of the actors.

The main goal of the longstanding project of our Munich Simulation Group is to develop the
rudimentary structure of a computer program which describes and simulates real societies,
like British, French, German, or Indian societies, in a very coarse-grained way. At present
we work on smaller projects: social practices [9], parallel aspects [5], economic models, crises
models [17], evaluation systems and state building, which can be embedded in our main
frame. Other frames are on the one hand more general, they can be applied also to complex
systems of other kinds. On the other hand they are more special in emphasizing modularity
and speedy execution. See, for instance [12].

1 The Language Module

In our main program we use the type free programming language Prolog for simulating
an AS. Additionally we use it as language for the actors of the AS. A Prolog program is
primarily not designed for a maximum execution speed, but it can easily be written and
read by people with a Latin-style language background.

The language of an AS contains types ([6], Chap. IV.), like h2; 2; h6; 5; 1; 2ii; phrases,1

1The set of phrases, particularly, contains words and names, too.

1

like nick2 or `the war 1914-1918 '; predicates, like go, perceive, discuss, produce, generate;
sentences, like `sleep(nick, in bed)', `discuss(rose,with nick)'; and in complex applications
variables, formulas and terms. We call phrases and sentences expressions.

The structure of the main program is simple. It is written for sequential computers [5].
This program consists essentially of layers of loops, where the central loop handles the ticks

(points in time, written here: t; ti; t+ 1; t+ 2; :::).
A part of the programming language is used to represent the idealized actor-languages.

Each actor of an AS uses an individual set of phrases and grammatical rules, and stores `his'
sentences in `his own' memory. Thus, an actor-language can contain idiosyncratic expres-
sions. In a �rst step, we use for an actor-language just the grammar of the programming
language.

In more detail, we divide the set of expressions e of the main program in four groups.
An expression-1 e is a phrase or a sentence, that is stored in the memory of an actor at a
certain time, relative to an AS. An expression-2 results from an expression-1 e, by wrapping
e in the form of mess(t; a;). mess(t; a; e) means, that the expression e is sent or received
as a message by the actor a at time t. An expression-3 originates from an expression-1 e,
by wrapping e in the form of fact(t; a;), see e.g. [2], Appendix, and [9], pp. 95. fact(t; a; e)
denotes, that the expression e in the AS has the status of a fact, that is perceived or generated
by the actor a at time t. The forth kind of expressions is only used by the programmers of the
main program. We call expressions-2 information elements (relative to an AS) or inels for
short. These inels are essential to our approach. We call expressions-1 the internalized inels

of an actor, and expressions-2 messages. In Prolog, we therefore represent the distinctions
of these four groups of expressions just syntactically.

2 The Society-Wide Entities and Relations

From the sequential ticks we de�ne the relations of posteriority �, and of periods, relative
to action-types. Physical space is represented by means of 3-dimensional

'

&

$

%

'

&

$

%subsystem1

subsystem2

environment
actors

�
��

@
@@

sss
ss

ss
a

�
- -

	

U

�

I -

-

�s s

ss
s ss s
s s

b c

c c
s s
s

s
Fig. 1 Arti�cial Society with two subsystems

2In Prolog, all terms with a capital letter at the beginning are variables. See e.g. [6]. Phrases (`predicates')
and sentences, in contrast, always start with a lowercase letter.

2

coordinates. The events (e; ei; :::) are used in Prolog as phrases in a multitude of variants
such as `sunrise143' or `a war' but also as sentences like `dies(nick)'. We also subsume the
`normal' objects, like `tree' or `men' as `borderline cases' under the events. In a puristic,
philosophical sense an action is a special kind of event. At the programming level, however,
we certainly treat actions as an own kind of entity. Depending of the kind of action we
synchronize actions in di�erent ways. We are aware of the problem of real synchronous
actions in a sequential computer. Usually we program action loops asynchronous, relative
to a loop (or several loops). For example, if an action consists of haggling about a costly
good the time-point for the beginning of the action is de�ned, so that the action can go on
for a certain period. During the action of haggling an actor can begin to perform a second
action, for instance, to react to an order independently of the ongoing haggling. The main
program decides in a rather crude way which of two actions has priority.

The main entities in an AS are the actors (a; ai; :::) and their `humanoid' characteris-
tics and relations, that are required for the reproduction of the AS, such as an `existence
predicate' (exi(t; a; 1): a exists at time t), components for aging, birth, death, sex and the
generation of new `children'.

An important component of an AS contains the information elements called inels. On
the language level, inels can be words, phrases, sentences, variables, formulas and terms.

In an AS, we describe two common relations between the actors and the environment
inherent to the AS that can be specialized in di�erent ways. The �rst relation expresses { in a
very general sense { the perception of an actor (perceive). For instance, an actor can perceive
a tree, a sunrise, a discussion or a war. This relation transforms objects, events or actions
into inels. On the other hand, the relation of generation (generate) is an important relation,
by which an inel, that belongs to the internalized expressions of an actor, is `changed' or
transformed into an entity, which is part of the actor's environment. An actor can transform
an inel into an action or into an event. If the generated result is an action, the inel i has
to be transformed in a two step process. First i becomes an intention, and subsequently it
becomes an action. An actor can e.g. `drop a stone from a tower' (that is a simple event),
`start a discussion with another actor' (this is an action), but also | in a borderline case
| `construct a table'. Additionally, we subsume the automatic `reexes' of an actor under
the generation relation.

In the basic module we di�erentiate between four types r� of individual relations that get
�lled with content in the subsystems of the AS. For an individual relation r� , we highlight
the main actor a of relation r� . If the main actor a in r� is related to an event, we write rev,
if a is related to an action we write rac, if a has an internal relation in a given subsystem we
write rint, and if a `lives' in a given subsystem and if he has an external relation to another
subsystem we write rext. With regard to contents, we list here some examples of di�erent
individual relations belonging to the subsystem-module: `The main actor a listens to music'
is an event-relation rev; `a marries a0' is an action-relation rac; `a marries a0, where a and
a0 both are diplomats' is an internal-relation rint in the political subsystem; `a marries a0,
whereby a is a politician and a0 is an economist' is an external-relation rext (both actors
stem from di�erent subsystems). Needless to say, these di�erent relation types can overlap.
For instance, a relation rint can simultaneously be a type rac relation.

3

Two subsystems are depicted (Fig. 1) in the `small world style',3 and the �lled circles
are some actors in these subsystems. A dotted line represents an individual relation. An
arrow shows the direction of the relation; a line without an arrowhead indicates the lack
of direction. There are additionally relations that require more than two actors, like a; b; c.
There are relations (`normal arrows') from an actor to the environment, and vice versa. The
external relations are shown as a bundle. Thus, an external relation runs along the bold
faced line.

3 The Subsystems of an AS

Because we are not a�liated to any speci�c sociological �eld,4 we introduce some empiri-
cally explorable subsystems, which we don't want to �ll with sociological or other content.
Additionally to physical space we use several social spaces relative to subsystems in the form
of graphs and cellular orderings.

'
&
$
%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

economy
education

religion health

care

politics

environment

actor

common
people

'

&

$

%

s
s ?�-

sss
ss

�

�

I s s s s s

sssss

s s s s s

s

s s

s
�

��	

A
A
A
A
A
A
A

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

@
@

@
@

@
@

@
@@

HHHHHHHHHHHHHH

��������������

Fig. 2 The Subsystems of an Arti�cial Society

We assume �ve particular subsystems (Fig. 2) based upon a large main population which we
call `common people' due to lacking a more appealing name. The biggest particular subsystem
of an AS is the economy, that in turn consists of employers and the related enterprises (like

3See [16], and the corresponding basic approach of NetLogo [14].
4We abstain from referencing the sociological `classics' like Bourdieu, Coleman, Durkheim, Giddens,

Luhman and Parsons in detail.

4

�rms, organizations, or holdings), of farmers (and farms, kolchozes, or industrial plantations),
and of sellers (and shops, warehouses, or eBay).

Another subsystem, education, is on the actor-level mainly built of a) children and par-
ents, b) pupils and teachers, c) students and professors, and consists on the institutional level
of the corresponding facilities, like kindergarten, schools and universities. Religion forms the
next subsystem. Here the actors are the people of faith and the priests. The associated in-
stitutions embrace rituals for the di�erent phases of an actor's life such as initiation rite,
marriage ceremony, seasonal celebrations and funeral service. The health care subsystem con-
tains sick persons and doctors or healers with the appertaining institutions, like hospitals
or medical practices.

Finally, the mightiest subsystem { currently in most of the real societies { is politics.
Here we can �nd the government (including the opposition) together with the often existing
subsystems of the legislature, the executive authority and the law, as well as the public
members that are frequently engaged as voters.5

4 The Computer Module

The parallel computer systems that we were already using 15 year ago, the Transputer sys-
tems, see [5], [3], are unfortunately no longer available. Currently we are forced to work with
single processor computers in which the actors are processed in a sequential way. Hence, a
spatio-temporal separation of subprocesses that should be associated to a speci�c actor is
hardly possible. In addition to the main program, some generated and some downloaded
tools are concurrently used. In our mind, the main computer of an AS is a system of inde-
pendent actor-computers connected by wires. Currently, we can represent this architecture
only within the program code.

So we write the code in such a way, that every actor a is structured according to (Fig.
3). An actor a has a processor with a memory, a mailbox, and four ports. He receives `direct'
messages from other actors through the port p1 and sends `direct' messages to some or
all actors through the port p2. Through the port p3 a receives items of perception, that
are no direct messages from other actors. These perceptions get converted into inels by the
transformer.6 The incoming inels from the mailbox and from the transformer are sequentially
ordered by the sequencer and forwarded to the processor. Every processor output { an inel

{ is passed through the sequencer. The inel can directly be sent to some or all other agents
via the port p2, or can be converted through the transformer, and the port p4 into an `event'
or into an `action', or can be forwarded to a `training loop'. Using the generate-port p4 we
see processes, that goes to the outside world of the actor and are partially generated by
internalized inels of the actor. The transformer at �rst generates an intention which exists
internal to the actor.

5In this arrangement, the army of an AS is part of the executive authority. In a di�erent conception the
army could be made up in an own subsystem. Religion can be combined with health care and education into
a single subsystem named knowledge system.

6Viewed realistically, some incoming sensory data get converted to brain signals. Of course, a computer
lacks this somatic level.

5

c

c

c

c

actor a

from
actors

p1 - -

- -

- -

"!

6
?

�

-?

� q
_

6

- �

?

-

-

processor

memory

mail-
box

trans-
former

sequencer sequencer

trans-
formerperceive

p3
generate

p4

send

p2

real level

linguistic level

'

&

$

%

Fig. 3 The Computer Module

Using the port concept, we distinguish two di�erent levels. On the upper level, inels are
directly sent to other actors and received by the other actors. Viewed realistically, we call
this the linguistic level. On the lower level, information is forwarded through events and
actions to the outside world of the actors. The events and actions have to be perceived by the
actor and have to be transformed into inels. Complementary to that, inels are transformed
into actions that get transferred to the outside of an actor. In a simulation, this two levels
can only be distinguished in a syntactical and computational way.7

5 Future Prospects

We mention at least three main topics for the future. Within the actor's memory it is
permitted to use names which are related to one and the same actor (or to parts of that
actor) in an reexive way. E.g. the actor nick currently memorizes the sentence thinks(nick).
With regards to content, this leads to reexivity or circularity that can also be found in real
life. We try to limit this circularity in our approach by syntactically di�erentiating between
the internalized inels, the facts and the messages.

7See e.g. the SONATA model in [8] as a complex example of this functional separation of an agent's
perceptions, actions and cognitions.

6

'
&
$
%

-

--

-b
b

b
b

?
6

� -p p p p p p
p p p p p p

nick says
nick sleeps

=actor=a1
nick

-

actor=a2

�� ��bb bb- -

�� ��bb bb- -

fact(t; a1; nick sleeps)

fact(t+1; a1; nick sleeps)

fact(t+2; a1; nick says)

mess(t+ 2; a2;mail12)

)Y

-

Fig. 4 The Four Levels of an Arti�cial Society

We mention at least three main topics for the future. Within the actor's memory it is
permitted to use names which are related to one and the same actor (or to parts of that
actor) in an reexive way. E.g. the actor nick currently memorizes the sentence thinks(nick).
With regards to content, this leads to reexivity or circularity that can also be found in real
life. We try to limit this circularity in our approach by syntactically di�erentiating between
the internalized inels, the facts and the messages.

Furthermore, we currently neglect the fact that the actor's environment in an AS imposes
many additional inuences upon an actor. Many aspects, already existing in computer games,
could be adapted to our frame.8

Finally, we have to postpone the study of temporal and/or local parallel actions, that
are reaching their physical { and other { limits, until a future generation of computers are
available. However, some of the aspects can also be implemented in a sequential way. A good
example is [7].

Literatur

[1] Balzer, W.: A Basic Model for Social Institutions. Journal of Mathematical Sociology.
16, 1{29 (1990)

[2] Balzer, W.: SMASS: A Sequential Multi-Agent System for Social Simulation. In:
Suleiman, R., Troitzsch, R. G., Gilbert, N. (eds.) Tools and Techniques for Social Sci-
ence Simulation, pp. 65{82, Heidelberg (2000)

8See e.g. the very popular computer game `The Sims' or `Haunt 2' described in [10].

7

[3] Balzer, W., Brendel, K. R.: DMASS: A Distributed Multi-Agent System for Simulation
in Social Systems (1996), www.lrz-muenchen.de/ W.Balzer/BALZER.html

[4] Balzer, W., Brendel, K. R., Hofmann, S.: K�unstliche Gesellschaften. Facta Philosophica.
10, 3{24 (2008)

[5] Brendel, K. R.: Parallele versus sequentielle Multi-Agenten-Simulation als Methode
der Sozialwissenschaft. Ein Vergleich anhand eines Solidarit�atsmodells, Dissertation,
M�unchen (2008)

[6] Clocksin, W. F., Mellish, C. S.: Programming in Prolog, Berlin (1987)

[7] Deguchi, H., Tanuma, H., Shimizu, T.: SOARS: Spot Oriented Agent Role Simulator {
Design and Agent Based Dynamical System. In Proceedings of the Third Internation-
al Workshop on Agent-Based Approaches in Economics and Social Complex Systems
(AESCS04), pp. 49{56, (2004)

[8] Ernst, A., Krebs, F., Zehnpfund, C.: Dynamics of Task Oriented Agent Behavior in
Multiple Layer Social Networks. In Takahashi, S., Sallach, D., Rouchier, J. (eds.) Ad-
vancing Social Simulation: The First World Congress, pp. 319{330, Springer, Berlin
(2007)

[9] Hofmann, S.: Dynamik sozialer Praktiken, Wiesbaden (2009)

[10] Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., and Stokes, D.: AI Characters
and Directors for Interactive Computer Games. In Proceedings of the 16th Innovative
Applications of Arti�cial Intelligence Conference, San Jose, California, pp. 877{883,
(2004)

[11] Plikynas D.: A Social Field Model: Premises for an Arti�cial Intelligence Based Simu-
lation of Human Society. In [13] pp. 135{142

[12] Polhill, J. G., Nicholas M., Gotts, N. M.: A new approach to modelling frameworks. In
[13] pp. 215{222

[13] Terano, T., Takahashi, S., Sallach, D., Rouchier, J. (eds.) Proceedings of the 1st World
Conference on Social Simulation, Vol. 1, Kyoto (2006)

[14] Tsvetovat, M., Carley, K. M.: Simulating Social Systems Requires Multiple Levels of
Complexity. In [13] pp. 231{238

[15] Wilensky, U.: NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999)

[16] Wilensky, U.: NetLogo Small Worlds model. http://ccl.northwestern.edu/ netlo-
go/models/SmallWorlds Center for Connected Learning and Computer-Based Mod-
eling, Northwestern University, Evanston, IL. (2005)

[17] Will, D.: Krisensimulation mit abstrakten Handlungstypen: Ein neuer, methodischer
Ansatz, Dissertation LMU M�unchen. (2000)

8

