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METHODOLOGICAL PATTERNS IN A STRUCTURALIST

SETTING

WOLFGANG BALZER

ABSTRACT. A new approach to analyze scienti�c methods as patterns of
state transitions is proposed and exempli�ed by the two most important, gen-
eral methods: induction and deduction. Though only `local' states of science
are considered in this paper, including hypotheses, data, approximation and
degree of �t, the approach can easily be extended to more comprehensive kinds
of states. Two `pure' forms of induction are distinguished, enumerative and hy-
pothesis construction induction. A combination of these two forms is proposed
to yield a more adequate picture of induction. While the pure forms of induc-
tion are clearly distinct from the deductive pattern, the pattern of the combined
form of induction is very similar to the latter. The present account of scienti�c
methods not only points out the di�erences between di�erent methods but - in
contrast to usual discussions of methodology - also clari�es what they have in
common.

1. FROM RULE TO PATTERN

There are many things that are called scienti�c methods and it seems unlikely
that all these things can be subsumed under one common notion. I want to deal
here with a certain subclass of methods which has mostly attracted the atten-
tion of philosophers of science, the class of most abstract and general scienti�c
methods containing induction, deduction, hermeneutics and abduction as its
most prominent members. Other kinds of scienti�c methods, like mathemati-
cal, statistical, or logical methods, general methods of measurement (e.g. panel
studies), speci�c methods of measurement (e.g. triangulation in geometry), or
concrete procedures (e.g. how to grow a certain strain of bacteria in a vat), will
not be discussed here.
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Etymologically, and in most of its uses, `method' refers to a process or pro-
cedure, a certain way of doing something. This procedural aspect has been
used to argue against the kind of analysis typical for the structuralist approach
in the philosophy of science in which (set theoretic) structures occupy a cen-
tral position.1 The alleged argument is that structural (and thus structuralist)
analysis has a static 
avor and therefore is not the best way to approach pro-
cedural issues, such as methods. This `argument' is clearly wrong, as should
be obvious at least to anybody with some basic knowledge of set theory. All
descriptions of procedures which have been given so far in science, not to speak
of all mathematical theories treating dynamical systems, can be, and usually
are, cast in set theoretic terminology, i.e. in the vocabulary mistakenly seen
as `static'. It is true, though, that methodological issues have been somewhat
neglected in the structuralist approach.

The standard account of methods is in terms of rules. A scienti�c method
is described as a rule the following of which counts as doing science in a re-
spectable manner. On this account a method is given by a rule description.
There are three main forms such rules can take. First, there is the unrestricted
form: Do b, where b is (a sentence describing) an action. For instance, `tem-
porarily accept an hypothesis only if it has passed a severe test'. The second,
conditional, form is: If condition c obtains, do b. Here c is a sentence or a set
of sentences describing a certain state of a�airs. For example, `whenever the
preliminary acceptance of hypotheses is on the agenda, only those hypotheses
should be accepted which have passed a severe test'. The third form is this: in
order to achieve goal g, whenever condition c obtains, do b, where g is a sen-
tence describing a goal. In the Popperian example, we might say `if you want to
do good science, whenever the acceptance of hypotheses is on the agenda, only
those hypotheses should be temporarily accepted which have passed a severe
test'.

Rules are often formulated in a prescriptive way. In my view, the prescrip-
tion, addressed to the members of a population, to do a certain kind of action
in certain situations is best understood in terms of the fact that that kind of
action in the population is performed in the pertinent situations without too
many exceptions, and in terms of certain social `mechanisms' furthering such
performances. In this sense, the prescription can be understood in descriptive
terms, and for this reason I prefer the descriptive account of rules and rule

1The basic reference for the structuralist approach is (Balzer et al., 1987). Compare also
(Stegm�uller 1979, 1986), (Balzer et al., 1993), (Balzer and Moulines, 1996) and (Balzer et
al., 2000).
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following as being more basic. The members of a population follow a rule if, in
a statistical reading, they perform the pertinent action whenever appropriate.

Clearly, an unrestricted rule do b cannot be understood as a permanent
prescription to do b; there are other things besides b which people have to do.
This weakness is removed in the conditional form. However, this form still has a
drawback because in order to distinguish between events of successful rule fol-
lowing and failure one has to refer to some standard external to the description
of the rule. In order to state that a rule has been followed successfully, we must
refer to the goal which usually is reached applying the rule. In the Popperian
example, the goal is to do good science. Applying the Popperian rule therefore
leads to success i� it leads to doing good science, and whatever that means,
there is no obvious way leading from the observation that the rule has been
followed to the conclusion that good science has been done. No wonder that
this rule aroused an extensive discussion. One way of introducing more content
here is to refer to truth. Instead of doing good science, the goal then becomes
to �nd true hypotheses. The di�culty with the goal and success in this example
is generic for the whole domain of scienti�c methods under discussion, and the
shift from `good science' to `truth' does not seem to provide much additional
clarity.

The explicit inclusion of a goal is not a matter of necessity. The goal may
be taken to be part of the action,2 in which case it need not be mentioned as
an extra component of the rule. Whether the goal is made explicit or not thus
largely is a matter of convenience. If the action regularly is successful, the goal
becomes less important. If the action often fails to reach its goal, success may
become a major issue, and in order to check for success the goal must be clearly
stated.

All this taken for granted, there is one big problem with the rule description
account of scienti�c methods. The account is �rmly tied to natural language
and does not allow to impose theoretical structure on the description of a rule
unless this structure can be formulated in terms of a natural language. Any
rule description therefore is bound to the fuzzyness of natural language. As
long as natural language remains recalcitrant to formal analysis there is little
hope to achieve a precise, theoretical understanding of scienti�c methods along
the rule account. More precisely, this problem of natural fuzzyness, as I will call
it, arises as follows.

In natural languages, actions are described in terms of verbs or verbal phras-

2This is the standard approach in action theory, see e.g. (Tuomela, 1984).
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es. Most natural languages contain very many verbs (from 30 to 50 thousand
and more),3 and provide rules to generate an unlimited number of verbal phras-
es. However, the internal structure of this huge system of verbs is still largely
unknown. As long as no such structure is available, any action description by
means of a verb will provide a rather isolated picture. The point is that a de-
scription using some de�nite structure can exploit the many other concepts
which are used in order to de�ne that structure, and their interrelations. A de-
scription in terms of just one verb lacks these possibilities. This point is further
clari�ed by looking at the way of scienti�c, theoretical descriptions. These are
stated by means of a whole set of axioms and a set of concepts which describe
the theoretical models. The description of a system or situation in terms of such
a theoretical model thus exploits more resources than a description in terms
of one single concept or term. It can be much more detailed and at the same
time more precise than a description in terms of one notion. A description by
means of one verb from a natural language does not reveal any interesting in-
ternal structure comparable to the internal structure contained in a theoretical
description of a scienti�c model.

This discussion points to a way in which the problem of natural fuzzyness
can be overcome. It can be overcome by leaving the domain of verbs and verbal
phrases as found in natural language and by describing the procedures and
actions associated with scienti�c rules and methods in a theoretical way which
does not depend on the system of verbs of a natural language.

There are already two modest attempts in this direction. A �rst proposal
was made in the context of measurement.4 According to this proposal, a method
of measurement is identi�ed in terms of theoretical models, called measuring
models, which can be de�ned in a formally precise way. Each measuring model
`describes' a system, whether real or only possible, in which a measurement is,
or could be, performed. A method of measurement therefore can be identi�ed
with the class of all corresponding measuring models.5 Each measuring model
has a rich internal structure, which is obtained from some established scienti�c
theory or several such theories. The method thus is described in a way which
explicitly uses a complex structure, the structure of models of established sci-
enti�c theories. This structure describes (among other things) the transition
from an initial state before the method was applied to a state obtaining after
its application. As descriptions of scienti�c method involve many state tran-

3See (Ballmer and Brennenstuhl, 1981) for a compilation of English verbs.
4See, for instance, (Balzer, 1985, 1992).
5It can be left open here whether success should be explicitly included in the de�nition.
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sitions the account just described is not general enough to capture scienti�c
methods.

A second, very simple account of rules is found in computer science, where
rules are construed as pairs (condition, action). Here, the actions are just
changes of the internal state of a machine, the states are completely speci�ed
by �nite descriptions, and the changes themselves also are completely speci�ed
as state transitions, i.e., by two lists of symbols, describing respectively the
state before and after the change. The transition or `action' thus is completely
speci�ed by two state descriptions (before and after) which in turn are com-
pletely speci�ed in terms of strings of abstract symbols, not in terms of verbal
phrases. The problem with this approach is that it achieves precision by means
of using very simple states, and even though it can be proved that this simple
approach is very powerful indeed, such proof is a piece of theoretical knowledge
which does not help in applications where transitions involve human action and
states are of the complexity of scienti�c theories.6

The approach presented here takes over this general view about modelling
of methods as state transitions but uses more complex kinds of states. More-
over, the picture is extended from single state transitions to patterns of state
transitions. The scienti�c methods under discussion are complex. Each single
application of such a method takes place, and generates, a real process, i.e., a
system running through di�erent states over time. Thus in one application of a
method several state transitions of di�erent kinds will occur. The sequence of
these transitions follows certain patterns which are di�erent for di�erent meth-
ods, and typical for each method. It therefore seems possible to characterize
each method by `its' pattern of state transitions. Of course, `characterization'
here must not be understood in the sense of grasping the full meaning of a
scienti�c method. It means that the patterns of state transitions (a) can be
used to distinguish between the different methods, and (b) are necessary con-
ditions which any process must satisfy in order to pass for an application of
the corresponding method. In the description of methods, three levels can be
distinguished. On a �rst, most basic level, the `deep structure' of the processes
arising from application of the method is revealed as a pattern of state tran-
sitions. On a second level, special constraints on single state transitions are
described which are typical for a particular method. On a third level, informal
components are added to the description which at the present stage cannot be

6Maybe this state of a�airs is historically contingent and simply due to the lack of interest
of computer scientists in social theories so far.
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made formally precise.
I will now propose a general, structuralistically inspired frame in which a

large set of transition patterns can be precisely described, and I will have a
closer look at the two examples of induction and deduction, leaving hermeneu-
tics7 and abduction for separate treatment.

2. A FRAME FOR SCIENCE DYNAMICS

The states I will conside8 roughly can be taken as corresponding to states of
structuralist theory-element, i.e., smallest units which can pass as empirical
theories. States consist of four components: a class M of models, a set D of
data structures, an approximation apparatus U and a degree of �t F.

Readers not familiar with the structuralist meta-theory may best think of
M as represented by a scienti�c hypothesis,9 and of D as a �nite set of da-
ta, i.e. atomic sentences formulated in the vocabulary of M . The hypothesis
may �t with the data up to a certain degree. Think of the data as points in
a 2-dimensional coordinate system, and of the hypothesis as a curve in this
coordinate system. The degree of �t then corresponds to some kind of `mean
distance' of the points to the curve. In general, there is no single distinguished
notion of distance that can be used in all cases of determination of �t between
a hypothesis and given data. Rather, the notion of distance usually is speci�ed
only in the context of a concrete, given theory, and for that theory. The spec-
i�cation of some notion of distance10 therefore is presupposed if one wants to
talk about the �t of a hypothesis and data. The approximation apparatus can
be regarded as yielding (among other things) such a speci�cation. The degree
of �t in general may be represented by a non-negative, real number (in�nity
included), but in the present paper I will use very coarse, qualitative degrees.

More formally, the models are conceived of as set theoretic structures of

7See (Balzer, 1997, Chap. 4) for a �rst analysis of hermeneutics along the lines presented
here.

8The following draws from, and emends, ideas �rst formulated in (Balzer, 1997, Chap. 4).
The standard structuralist notions (models, approximation apparatus, theory-elements etc.)
are used in the sense of (Balzer et al. 1987).

9In fact, I will make use of this reading in the following, and often speak of M as a
`hypothesis'.

10Besides the well known numerical distances, Euclidean, maximum, minimum, supremum
etc., there are many other formal de�nitions of distance functions which satisfy the topological
axioms for a metric, for instance the number of elements of the symmetry di�erence of two
sets. Compare (Balzer and Zoubek, 1994) for some standard examples.
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a given type � in the sense of formal logic, and the data structures as �nite
substructures of structures of type � , where the notion of a substructure is
used in the following, generalized sense. If x = hu1; :::; uki is a structure of type
� , then y is a substructure of x i� y = hv1; :::; vki, where, for all i � k; vi �
ui, and the non-empty components of y satisfy all typi�cation requirements
pertinent to them. For instance, if x = hD1; D2; R1; R2i with R1 � D1 � D2

and R2 � D1 then y = hD0

1
; D0

2
; R0

1
; ;i is a substructure of x if ; 6= D0

1
� D1,

; 6= D0

2
� D2 and ; 6= R0

1
� R1. This allows for substructures to have empty

sets as components, and thus for data structures representing data formulated
only with a subset of the notions that occur in the full models of a theory.

The approximation apparatus of a theory among other things speci�es ei-
ther a topological (e.g. a metrical) or a uniform space on the set of structures
of type � . With the help of such spaces we can express that a model and a
data structure are close to each other (with a certain degree) and in this sense
�t with each other in the special sense given by the particular space. The ap-
proximation apparatus moreover contains admissible blurs or degrees of �t or
closeness. If a model and a data structure are close to each other up to a degree
admissible for the theory under consideration, this means that, from the point
of view of that theory, the data are `good enough' in the light of the model and
conversely, the model is `good enough' in the light of the data. So both parts
corroborate each other. These admissible blurs usually are tied to similarities or
distances in the data. For instance, the standard deviation of values obtained
from repeated measurements of a function for `the same' argument yields a
kind of very local `admissible blur' which can be used only for the particular
argument under investigation. If such `local' blurs could systematically be com-
bined to comprise all the parts of full structures we would obtain de�nitions of
a theory's admissible blurs in terms of distances of measured values.11

In the structuralist model a theory has more inner structure than it has
in the statement view (i.e., when conceived as a set of statements). There is a
class of models (corresponding to one hypothesis or to several hypotheses in
the statement view), and there is a set of data structures (corresponding to one
homogenous, unstructured set of statement view observation sentences). There
is a set of intended systems, i.e. real systems to which the adherents of the
theory intend to apply it. The data which have been obtained from one such
system, when put together in the right way, form a data structure as introduced
above. A theory therefore has many di�erent data structures, depending on

11Compare (Balzer, 1997, p. 223) for more details.
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its di�erent intended systems.12 This means that the undi�erentiated set of
statement view observation sentences on the structuralist account is structured
according to the di�erent real systems from which the data come.

The approximation apparatus initially provides notions of closeness between
single models and single data structures, i.e., expressions of the form �t(x, z, ")
where x is a model, z is a data structure, and " a positive real number. Though
the following analysis in principle can be carried out even at this �ne grained
level of single structures, reasons of simplicity suggest to begin at the aggregate
level of sets of models and data structures. Accordingly, in this paper I will
consider statements of �t of the following form �t(M;D;U; F ) where M is a
model class, D a set of data structures, U an approximation apparatus, and F

a degree. Such a statement is read as follows: `Relative to the approximation
apparatus U , the degree of �t between M and D is F '.

For the purpose of this paper it is not necessary to specify how exactly
the �t of M with a set D of data structures is de�ned in terms of the �t of
single members M and D. In general, there are many possibilities, such as
minimum or maximum of the individual values of �t (which also works for
qualitative degrees, where e.g. the minimum corresponds to an intersection),
or mean values of individual values of �t (in cases where quantitative measures
of �t are available).13 Assuming any such de�nition, we can express that, with
respect to an approximation apparatus U , a set D of data structures �ts with
a class of models M to a given degree F .

I will consider only three degrees of �t in this paper: + (= good �t), � (=
bad �t), and � (= �t is unknown), thus F will take only one of the three values
+,�, �. Of course, what counts as good or bad depends on the particular situa-
tion in which �t is investigated and on the topological notion of approximation
or closeness given by the approximation apparatus. As already pointed out, the
admissible blurs are tied to distances and similarities in the data at least in a
pragmatical way. The degree of �t being unknown usually means that it has
not been investigated.

In science dynamics we want to describe (and ultimately also to explain)
transitions of states of science, and in a �rst approximation we may consider
states of the above form hM;D;U; F i to represent states of science (though
only very locally and on the `pure' level of knowledge representation). We can
conceptually distinguish transitions in which only one

12It should not be ruled out that one intended system gives rise to di�erent data structures.
13Compare (Balzer and Zoubek, 1994) for concrete de�nitions.
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(A1) hM;D;U; �i �! hM;D;U;+i
(A2) hM;D;U; �i �! hM;D;U;�i
(B) hM;D;U;Xi �! hM 0; D; U; �i
(C) hM;D;U;Xi �! hM;D0; U; �i
(D) hM;D;U;Xi �! hM;D;U 0; �i
(E) hX;D; Y; �i �! hM;D; Y; �i
(F) hM;X; Y; �i �! hM;D; Y; �i
(G) hM;D; Y; �i �! hM;D;U; �i

Figure 1

component, two components, or more than two components are changed. This
yields a longish list of formal possibilities. In Figure 1 some of the more inter-
esting cases are summarized.

In cases (Al) and (A2) in the initial state the degree of �t is unknown, while
after the transition it is good or bad. Such transitions capture the actions of
investigating and stating the degree of �t between M and D with respect to
U . In each of the cases (B), (C), (D) one of the M , D, U components is
changed. Irrespective of the degree of �t in the initial state (denoted by the
variable X), this results in a new state in which the degree of �t involving
the new component has not yet been investigated. Cases (E), (F), (G) cover
transitions at very early stages of a scienti�c development (a theory-evolution or
a research program) in which not all the three components M;D;U have been
introduced. In case (E) initially there are just `data'. This represents a state
in which a new, reproducible phenomenon has been observed and stated but
has not yet been explained by a hypothesis. In the �nal state of this transition
a corresponding hypothesis has been introduced, but the degree of �t has not
yet been investigated. In the initial state of case (F) a hypothesis M `looks
for' data. This can occur when new models are transferred from one domain of
application, where they had been successful, to a new domain which initially is
just given in terms of some intended systems. No data are yet available for the
models, e.g. because they use a new vocabulary, and data in the new domain
previously had been formulated in a di�erent vocabulary. After the transition,
data are present, but it has not yet been investigated. The �nal case describes
the �rst introduction of an approximation apparatus for a new pair hM;Di. Of
course, in the real process, some of these transition types may be realized at
the same time.
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Sequences of state transitions are best represented by means of 
ow chart
diagrams. Figure 2 shows such a diagram which captures the most essential
transitions. Each box contains a description of a state, and the arrows indicate
possibilities of state transitions. If only one arrow leaves a box this means that
the state noted in that box is followed by another state
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Figure 2

of the form written in the box to which the arrow points. If two or more arrows
leave a box, then external in
uences determine along which arrow the transi-
tion will proceed. The arrows pointing upwards denote loops (or recoupling).
When the process runs along such an arrow, the content (state) of the box at
the beginning of the arrow is written in the box at the end of the arrow, whose
original content is overwritten. The use of loops allows the depiction of possi-
bly in�nite sequences of state transitions in a rather compact form in which
patterns can be recognized relatively easily.

The 
ow chart in Figure 2 has no end. Beginning with data or a hypothesis,
it will reach the state hM;D;U; �i in the center at the top. In this state, mod-
els, data structures and an approximation apparatus are given but �t has not

10



been determined. The two arrows leaving this box represent the two possible
outcomes of an investigation of �t: good �t (+, left hand arrow) or bad �t (�,
right hand arrow). In each of the two successor states three possibilities arise,
represented by three arrows leaving that state: the models can be replaced
by a di�erent set M 0, and similarly for D and U . Each of these replacements
leads to a state in which �t again is unknown (the six boxes at the bottom).
From each of these boxes there is a recoupling arrow back to the central state
hM;D;U; �i. Running along any of these arrows the content of the box at the
bottom is written into the box hM;D;U; �i where the next round is started.
As there is no exit, the process thus depicted would run forever.

In general, more complex 
ow charts can be constructed from the `basic'
transitions (arrows) by means of two devices. First, certain small, local patterns
may be `put together' in a certain order. Second, constraints may be introduced
on the choice of new model classes M 0, new sets of data structures D0 and new
approximation apparatuses U 0. I will now exemplify these possibilities in the
discussion of deduction and induction.

3. EXAMPLES: DEDUCTION AND INDUCTION

The core of the deductive method can be described as follows. In order to test
a new hypothesis, the hypothesis should be submitted to a severe test. This
test consists in the deduction of a new observation sentence (datum, predic-
tion) from the hypothesis plus necessary initial conditions and/or background
knowledge. If the observation sentence can be veri�ed the hypothesis can be
temporarily accepted, if not it must be rejected. In the latter case a new hy-
pothesis should be considered and treated in the way just described. The choice
of a new hypothesis is constrained by two conditions. First, the new hypothesis
should be rather improbable, and second, it should not be ad hoc (i.e. obtained
from the `old' hypothesis by means of a minimal change to `save' the new
observation). A third constraint is imposed on the agreement about the new
observation sentence. This should proceed in terms of rules about which the
persons involved have agreed beforehand, i.e., before they engage in applying
these rules in a particular case.14

I will not try to incorporate the constraints, but will concentrate on the basic
sequence of introducing a new observation sentence, testing it, and eventually
choosing a new hypothesis. This yields a 
ow chart as depicted in Figure 3. In

14See for instance, (Popper, 1959) or (Lakatos, 1978).
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some initial state at the top, models (hypothesis), data structures (data) and
an approximation apparatus are given, and �t has not been investigated. That
is, the hypothesis has not even been evaluated in the light of the available data.

?
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s new and
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M 0; D0; U; �

Figure 3

The two branches below that box show the two possible outcomes of an inves-
tigation of whether the hypothesis �ts the given data. If it �ts, we reach (on
the left) the initial state for further deductive development, hM;D;U;+i: the
hypothesis �ts the available data. This initial condition of �t is not stressed
in the literature, but it is necessary. If a new hypothesis is to be considered
at all, it �rst of all has to �t the data already at hand. A hypothesis not sat-
isfying this condition will not be seriously considered at all, and will not be
communicated to the scienti�c public. Now the hypothesis (represented by M)
is severely tested. First, a new observation sentence s is derived. This leads
to a new state hM;D0; U; oi in which the initial data D are extended by s.
Next the validity of the new observation sentence s is checked. In the picture
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this is represented by the two arrows leaving that box. If the state at the left
is reached this means that the new sentence, the `prediction', was validated,
because �t with the other data was already investigated in previous steps with
positive result. If the new sentence turns out true, then by recoupling the re-
sulting state hM;D0; U;+i is written into the upper left box, where the process
of testing the hypothesis starts anew. In case this left hand loop has been run
through several times, which means that the initial, given hypothesis has been
successfully tested several times, a provision is made to stop the process by
entering the exit arrow. As a matter of empirical, historical fact, even hard
headed deductivists do not repeat this loop many times.

If the prediction turns out to be false, we follow the right hand arrow leaving
hM;D0; U; �i, reaching hM;D0; U;�i. In this state, the hypothesis (represented
by M) has been falsi�ed. It is abandoned and replaced by a new one, M 0, sat-
isfying the constraint that it has not yet been tested.M� denotes the set of all
model classes which have previously been considered

�
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Figure 4

in the process. The new state hM 0; D0; U; �i is then written in the box on top
where the process starts again.

When in the �rst, top branching in Figure 3 the right hand state is reached,
this means that a hypothesis (class of models) which is considered does not �t
with the known data. In this case no test of the hypothesis is necessary. It is
abandoned, and replaced by another one. In the 
ow chart, an intermediate
step is inserted to achieve greater simplicity: hM;D;U;�i �rst is replaced in
a trivial way by hM;D0; U;�i where D0 = D, i.e., nothing has changed. Only
after that step, M is replaced by M 0.
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This 
ow chart in Figure 3 contains two main loops. The �rst includes the
three states hM;D;U;+i, hM;D0; U; �i, hM;D0; U;+i on the left hand side.
This loop may be run through several times, which means that a �xed hypoth-
esis successfully passes several tests (confrontations with new predictions). The
second main loop is the one including hM;D;U; �i, hM;D;U;+i, hM;D0; U; �i,
hM;D0; U;�i, hM 0; D0; U; �i. This loop may be run through with or without
interceptions of the previous, left hand `success' loop. Neglecting these possible
successes, the second loop may be described as follows. The hypothesis �ts the
available data and thus is considered seriously. It is then confronted with a
severe test (a prediction s) which fails. The hypothesis is abandoned, replaced
by a new one, and the loop is repeated.

Readers used to read 
ow charts will immediately see that this 
ow chart has
two redundant boxes, namely hM;D0; U;+i and hM;D0; U;�i. Removing these
and adjusting the arrows we obtain the following simpler, equivalent 
owchart
(Figure 4).

Turning to induction, the situation becomes more complex. There is no
authoritative source (like Popper for deduction) nor a school or a research
program investigating `the' inductive method. Even worse, two quite di�er-
ent approaches can be found in the literature which use the label `induction'.
The �rst is typically found in philosophical writings, and sometimes labelled
`enumerative induction'. The second approach has spread from philosophy of
science to AI and computer science, where it is found in two di�erent versions,
called `machine discovery'15 and `inductive inference in the limit',16 respective-
ly. I will summarize both approaches under the label of `inductive hypothesis
construction'. I will look at these variants and then suggest to extend the use
of the term `induction' to a more general method in which they are aufgehoben.

The �rst form of induction may be understood as a method of testing a given
hypothesis. It proceeds by systematically testing all instances of the hypothesis.
For example, if the hypothesis is a universal sentence `for all x, A(x)', one tries
to test all instances A(b) where b varies in the set of all objects for which the
hypothesis is claimed to hold true.

The 
ow chart of this very simple method is shown in Figure 5. It begins
with a hypothesis (class of models), an approximation apparatus, and a set
of data which initially may be empty. All these data, as well as those to be
considered in the process, come from one system in which the validity of the

15Compare e.g. (Langley et al., 1987).
16Compare e.g. (Lauth, 1996). All these kinds of induction as scienti�c methods are related

to the so called problem of induction, but I will not attempt to spell out this relation here.
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hypothesis is under investigation. In Figure 5 the initial state is represented in
the top box. If the hypothesis is tested and �ts the given data (following the
arrow to the left), a new instance b is considered, and it is checked whether the
hypothesis is true for b. This leads to the lower left box, from which by recou-
pling we get back to the original state. The loop consisting of these three states
represents the core of enumerative induction. The hypothesis is inductively
con�rmed by repeated check of di�erent instances. In the standard situation
where a �xed system is considered, b is just a new datum from that system,
i.e., an observation sentence which is obtained from the system and which has
not yet been investigated in previous loops. Dtested denotes the set of all data
which have been considered previously. The situation gets a bit more compli-
cated when there is more than one data structure (which is the normal case).
In this case the loop just considered is restricted to data from one system, and
a second loop over the di�erent systems is added `on the top' of the loop just
described.

When things go wrong, i.e. when an instance is found which does not �t
the hypothesis, the arrow from the top box to the right is reached. Here the
process of enumerative con�rmation stops. It also stops when the set of data
exhausts the given system, i.e. when no new data can be found in
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the system which have not already been checked, so that the set of data is max-
imal in this sense. Though this case ideally can occur only in �nite systems it is
very relevant for real-life experimental science where some numerically in�nite
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domain is usually coarsened by identifying values which cannot be distinguished
experimentally. A typical example is the ideal gas law which is tested by �nite
series of measurements over real intervals (containing uncountably many num-
bers).17

The second pattern, of inductive hypothesis construction, is obtained from
the previous one by interchanging data and hypothesis. Now the data are given
and a hypothesis �tting these data is searched in a space of hypotheses. The
resulting 
ow chart is depicted in Figure 6.

When a chosen hypothesis M does not �t the data (in state hM;D;U;�i)
a new hypothesis M 0 is chosen and by recoupling we get back to the initial,
upper box. M� denotes the space of all those hypotheses which have not yet
been investigated in previous loops. Usually this is a very large space. If M�

is empty this means that all possible hypotheses from the space have been
considered. In this case the process terminates at the lower exit. In case of
good �t of M and D the process terminates because the goal of �nding a
hypothesis �tting the data has been reached.

Both these patterns represent respectable scienti�c methods. They share
the feature of systematically searching a space of possibilities - instances in the
enumerative case and possible hypotheses in case of hypothesis construction -
a feature which is completely absent from the deductive approach.
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17Compare (Balzer, 1997, Sec. 4.5) for a detailed account of this example.
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Given that both patterns are well entrenched in scienti�c practice it would
not be fair to reserve the label `induction' to just one of them. Therefore the
possibility of combining the two patterns should be seriously considered. In
reality both patterns often get mixed. Scientists repeat the con�rmation loop
until they feel sure enough that further investigation will not lead to signi�-
cant change of �t, they then try another, sharper hypothesis, run through a
number of con�rmation loops until this hypothesis also is sure enough, then
try another, sharper hypothesis, and so on. Instead of pointing out case studies
of historical developments let me just mention the BACON programs18 which
exemplify this mix in a very pure and clear way. As both `component' methods
are called inductive, why not also call their combination `induction'? The com-
bined pattern is much more systematic than the deductive pattern, and thus
certainly deserves recognition as a scienti�c method. I suggest to use the label
`induction' also, and deliberately, for a combined pattern of enumerative and
hypothesis constructive induction, and I will use the term in this sense in the
following. What is the precise structure of this combined pattern?
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+ stable over many
previous loops

Figure 7

If we simply put together the two 
ow charts from Figures 5 and 6 in the order
giving priority to con�rmation loops, the result is a 
ow chart which is identical
with the reduced 
ow chart of deduction. This is somewhat surprising and
reveals a closer relationship between the two methods, induction and deduction,

18(Langley et al., 1987).
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than one would expect from the discussions found in the literature. On the other
hand there are clear di�erences between the two methods, and they are at each
of the three levels introduced above.

At the level of the deep structure of a pattern there is the following dif-
ference. In induction, there is no sharp criterion for leaving the (left hand)
con�rmation loop. In deduction, this loop is left if and only if the new datum
is incompatible with the hypothesis. However, in induction it can also be left
in case the datum is compatible. As already noted, if the con�rmation loop
is successfully repeated many times the hypothesis may become validated in
a statistical sense so that there is not much gain in repeating the loop any
further. In such cases the loop may be left even if no contradiction has oc-
curred. In deduction, by contrast, the choice of a new hypothesis is triggered
only by failure of the test of the previous hypothesis. A decisive di�erence in
the patterns for deduction and induction therefore is that the latter pattern
includes an arrow from a state of good �t to a state in which the models have
been changed. Figure 7 shows the 
ow chart for induction obtained by putting
together enumerative and hypothesis constructive induction, and adding the
possibility of leaving the con�rmation loop even in cases where no contradic-
tion has occurred.

Comparing Figure 7 with the reduced scheme of Figure 4 for deduction we
see that a further arrow has been added to the deductive scheme, leaving the
hM;D;U;+i box and pointing to a state hM 0; D; U; �i in which a new hypoth-
esis M 0 is considered. On the level of patterns of state change the combined
inductive pattern therefore is properly more general than the deductive one.

At the level of constraints there is a �rst di�erence in the nature of the new
datum which is added toD in order to obtainD0. While in induction this datum
must be an instance of the hypothesis, in deduction the new datum usually is
related to the hypothesis in a more complex way, governed by logical deduction.
In induction this leads to repetitions of the left hand loop with data of the same
form, while in deduction very di�erent kind of data and predictions will occur
in the loop - as long as it continues. This di�erence is not explicit in the 
ow
chart, but we can add a constraint on induction expressing that the new datum
is an instance of the hypothesis represented by M .19 Note that, with respect
to this feature, deduction is more general than induction, for the prediction s

19Although the straightforward way to formulate such a constraint is to introduce syntax,
is should be noted that a purely structuralist formulation avoiding reference to syntax also
is possible. I do not work out the details of this constraint which require lengthy de�nitions
and are not really pertinent to the present paper.
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in the deductive method may well be just an instance of the hypothesis - even
though it must be deducible from the hypothesis and background assumptions.

A second di�erence on the constraints level is that in deduction the new
hypothesis should be a bold or improbable one - at least for Popperian deduc-
tivists. This requirement could be stated as a constraint on deductive method.
However, the de�nition of a probability space which allows to assign proba-
bilities to hypotheses is problematic, and presentlv far from being applicable
to concrete theories.20 On the inductive side this condition is replaced by the
requirement that the new hypothesis is found by means of some clever heuristic
algorithm to search the space of all possible hypotheses. Without entering into
a detailed analysis of the two notions of boldness and clever search algorithm
it seems clear that requiring boldness yields a more special approach. Among
the clever search algorithms one would expect to �nd some which in each step
(or most steps) �nd the respectively boldest hypothesis.

At the informal level, one di�erence is that in deduction the new hypothesis
should not be ad hoc. As no workable criterion of simplicity is available for
theories, and as ad hocness is tied to simplicity, this requirement presently
remains an informal one.

The result of this �rst comparison of deduction and the combined notion
of induction may be summarized as follows. While at the pattern level and in
the rules for the choice of new hypotheses the inductive model is more general,
with respect to the choice of new data or predictions it is the other way round.
Therefore neither method is more general than the other, though induction (in
the combined sense) has some advantage.

4. CONCLUSIONS

I suggested to study scienti�c methods in terms of patterns of state transitions.
The states which were considered in this paper are of the most simple form,
consisting of a class of models (a hypothesis), data, approximation apparatus
and degrees of �t. Social aspects of scienti�c developments are left out of the
picture. Even at this very coarse and idealized level the approach yields a rich
domain of possible patterns, two of which were considered in detail: deduction
and induction. In the domain of induction, two di�erent accounts can be distin-
guished, the enumerative and the hypothesis constructive account. I proposed
to use the label `induction' also for a combination of these two accounts. It

20See (Lauth, 1996) for a general construction of such a space via axiomatic set theory.
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turned out that at the level of 
ow chart patterns, deduction and induction
are rather similar, in fact deduction is a special case of the combined inductive
pattern, though di�erences could be seen even at that level.

The notion of states used here can be, and should be, generalized to comprise
structuralist theory holons21 which are the most adequate representations of
scienti�c states at the level of knowledge representation. When this is done,
the constraints on single state transitions which were described only informally
in this paper, can be formally stated. Using more general kinds of states also
will allow to pinpoint those areas of scienti�c change in which social factors are
important.

Finally, I claim that other scienti�c methods, in particular that of hermeneu-
tics, also can be satisfactorily described in the present frame as patterns of state
transitions.
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