Urban’s Rule for Generating a List from other Lists

DESCRIPTION

Ly, ..., L, are given lists — of variable lengths. From each list L; one element
is chosen so that these elements make a new list N*. All these new lists N?
together form a list LL of lists N, ..., N™ such that any two new lists N7 and
NP* are different.

Cart([]aﬂ[])"

cart(,[I,[-1

cart([A | ARest],BL,CL):-
create_tuple(A,BL, TList),
cart(ARest,BL,Clnterim),
append(TList,CInterim,CL).

create_tuple(_,[],[]).
create_tuple(A,[B | BRest],[[A,B] | TRest]):-
create_tuple(A,BRest, TRest).

% the product of n lists is the empty list, if one of the input lists is empty.
% predicate is undefined, if by mistake the input list contains only one list.

n_cart(NList,[]):- member(NList,[]),!.
n_cart(NList, undef):- length(NList,1),!.

n_cart([AL,BL | Rest],CL):- % take the first two lists and create
the product of these two lists first %
cart(AL,BL,C), % now extend the initial tuples by processing

the remaining lists so that you get a list of
n-tuples which is the product %
extend_cart_tuple([C | Rest],CL).

extend_cart_tuple([C | []],C).

extend_cart_tuple([TupleList,Next | Rest],CL):-
help_extend_cart_tuple(TupleList,Next, ETupleList),
extend_cart_tuple([ETupleList | Rest],CL).

help_extend_cart_tuple([|,-,[]).

help_extend_cart_tuple([T | TupleList],List,ExtTupel):-
extend _tuple(T,List,EList),
help_extend_cart_tuple(TupleList,List,IList),
append(EList,IList,ExtTupel).

extend_tuple(_,[],[]).

extend_tuple(T,[E | Rest],[ExtT | ERest]) :-
append(T,[E],ExtT),
extend_tuple(T,Rest,ERest).

test(C):-
cart([1,2],[3,4],C).

test0(C):-
n_cart([[1],[3,4],[1,6,7]],C),
assert(result(C)).

test(A,B,C):-
n_cart([[1,2,3],2], [5,[6,7,8],[91],A),
assert (result (
n_cart([[1,2],]
assert(result(
n_cart({[1,2],[
assert (result (

General Copyright License (©) 2008 by Josef Urban

