
DMASS: A Distributed Multi-Agent System for Simulation in
Social Science

Wolfgang Balzer

Karl Brendel

University of Munich
Institut für Philosophie, Logik und Wissenschaftstheorie

April 1996

The aim of this paper is to describe a first version of a program for a multi-
agent system which we call DMASS in the following for the sake of reference.1

DMASS is a properly distributed system running under BRAIN AID PROLOG2

on transputer systems. The intended applications of the program are qualitative
simulations of social systems in a micro-macro setting in which each actor of
the social system is represented by one transputer.

We do not know any other system running on distributed hardware which
aims at this kind of applications. Therefore, we believe, the description of
DMASS is of some interest even if we do not yet have thoroughly worked out
simulation results.3

Existing qualitative, social simulations mainly are performed in a cellular
automata environment4 and programmed and run in serial environments.5 We
claim that the existing simulation results can be reproduced in DMASS without
much effort and that DMASS is an instrument for social simulation much more
flexible and smooth than cellular automata. A detailed comparison of DMASS
with cellular automata simulations cannot be made here for reasons of space.

Our second claim deals with the treatment and administration of time in
DMASS as compared with serial systems. DMASS in this respect is not only
much easier and much simpler to program but also avoids biases which at the
present state of standard operating systems are practically unavoidable in serial
programs.

The salient feature of DMASS is a minimal, restricted conceptual apparatus
to deal with comprehensive, social phenomena. Its architecture primarily aims

1We are indebted to G.Gerl, J.Sander, J.Urban and J.Tazarki for helpful suggestions, to
K.Ritter for permission to use a first generation transputer system in his research lab at the
Technical University of Munich, and to R.Schöne and W.Schultz for technical assistance.

2This is the only PROLOG version we know running on distributed hardware. The package
is developed by M.Ostermann, F.Bergmann and G.von Walter, see (Ostermann et al., 1995).

3We are presently performing simulations at a large transputer system at the computing
center PC2 of the University of Paderborn. We are indebted to M.Ostermann and B.Bauer
for assistance in using this computer.

4See, for instance, (Cohors-Fresenborg, 1977) for this notion.
5Interesting simulation results have been achieved in such settings, for instance by (Hegsel-

mann, 1994) and (Liebrand & Messick, 1992).

1

at providing a flexible frame in which the user may himself insert variable ‘rules
of behavior’ for various forms of human action and interaction, including various
forms of messages, and study the macro-effects of these micro-items. DMASS
was developed by application of a bottom up strategy: only those notions which
proved essential for the intended simulations were included. This results in a
lack of almost all features present in BDI architectures.6

1 Transputer Systems and BRAIN AID PROLOG

A transputer system consists of a set of independent processors (transputers)
among which there are hard wired connections. Each transputer supports eight
processes which can be identified in a program. If we neglect the particular
features of transputers a transputer system may be imagined just as a net of
ordinary computers which are interconnected with each other. However, only
one of these -the ‘server’- is distinguished as an interface to the user while the
other, ‘normal’ transputers are not directly accessible to the user. Thus, if the
user wants to place some input in one of the normal transputers, he has to load
that input to the server together with a command that makes the server send
the input as a message via internal wire to the intended receiver.

A transputer program therefore typically consists of two parts. One part reg-
ulates the input-output behavior of the server, while the second part contains
those programs which are downloaded -via server- to the normal transputers.
Input typically consists of different programs, one for each normal transputer.
The server takes these programs and sends them to the respective normal trans-
puters for which they are intended, together with a command to store them.7

When the program is finished the server collects the results from each normal
transputer (if there are any), and gives them as output to the user.

BRAIN AID PROLOG8 or BAP, for short, is a variant of PROLOG which
runs on transputer systems. On each single transputer BAP is just like PRO-
LOG. Thus each transputer has a data-base of atomic facts together with a set
of rules which are formulated in the well known Horn-clause form.9

In addition to this, in BAP each transputer has a ‘mailbox’ to which mes-
sages can be sent by the other transputers. Each transputer systematically

6See (Rao & Georgeff, 1991).
7A nice feature of the PROLOG environment is that these programs are PROLOG terms

and thus have the structure of ordinary messages as exchanged during the simulation runs.
8(Ostermann et al., 1995).
9An easy introduction to PROLOG is found in (Clocksin & Mellish, 1984), see also (Der-

antsart et al., 1996).

2

empties its mailbox in ‘first in - first out’ order, and deals with the messages
it finds there. More precisely, the transputer considers the first message of the
stack in the mailbox (which is the first it received earlier). The content of the
message is given by a PROLOG term. When the transputer has read this term
it immediately takes it as a command and tries to execute it. For instance, if the
message content was a predicate, say, retract(value(peter, 2, 3)) the transputer
will execute this PROLOG predicate, and retract the entry value(peter, 2, 3)
from its set of facts.

In BAP, each transputer also can send out messages with a distinct address.
This is done by a command send(Sender, Receiver, Content) in which Sender
and Receiver identify the sender and the receiver of the message,10 respectively,
and Content is the message content which can be any PROLOG term. When
a transputer comes to execute this predicate, the message -together with the
identifications- is sent to the transputer identified in the predicate as Receiver.
There, it is added to the stack of messages in the receiver’s mailbox, as the last
member.

The notion of a ‘term’ in PROLOG is rather comprehensive. For instance,
each PROLOG program as well as each atomic fact is a term. As PROLOG
does not impose any substantial restriction on the logical types of its expressions
the content of messages sent back and forth thus can be arbitrarily rich. In this
respect BAP seems to outperform all other available programs for distributed
systems.

2 Transputers Representing Social Agents

Our philosophy in using a transputer system for social simulations is to represent
each social agent by one transputer:

one agent − one transputer.

Actually, a transputer supports eight processes so one might contemplate to
increase the number of agents by representing each agent by one (and always
the same) process on one (and always the same) transputer. This strategy,11

however, has disadvantages the clarification of which, we think, is illuminating.
Social agents are not only agents, that is, individuals with sensory surfaces

and certain intellectual capabilities. They are at the same time social beings.
It is not very clear to-day what this means precisely, but one thing is clear: an

10More precisely, these are names for transputers in the system.
11The strategy is also made attractive by the high cost of transputer hardware in comparison

to ‘ordinary’ hardware.

3

essential feature of ‘sociality’ rests in the ability of exchanging information, of
communicating, and of influencing one another. In a simulation environment
this feature reduces to the exchange of messages, more precisely, to the ability
of sending out and receiving messages which bear some more or less definite
content. Thus there are two basic components for a system of social agents, both
equally important. On the one hand, there are the individuals with their sensory
and cognitive abilities. In a very reduced form such an individual is represented
on the computer by a knowledge base consisting of a set of statements and of
rules for changing this set in the light of incoming, new information.

On the other hand there is the ‘world’ of interaction, communication and
influence. In order to represent this world of interaction, the knowledge base
must be split up and its parts relativized to the individuals, and another com-
ponent must be added to the system: another set of rules which ‘simulate’ the
exchange of pieces of knowledge among the ‘different’ knowledge bases of the
individuals. In the real world communication is highly contingent on the con-
tent of the messages exchanged and on the respective states of the senders and
receivers. The ‘rules of communication’ are elusive and difficult to identify. To
know them means to know the structure of the social world in which the persons
live.

A distributed program represents this situation rather realistically. There
are practically no explicit rules for communication. The only thing regulated is
the ‘physical’ exchange of information between the transputers. The content as
well as the address and time of a message is entirely under control of the sender,
and of its respective internal state. In the same way, each receiver of a message
is ‘free’ to react to it or not.

A serial program in principle might be constructed in the same fashion. How-
ever, in such a program there is no necessity of explicitly representing messages
and their exchange. The effect of one person sending a message and another
person reacting to it may directly be stated as a rule of the program. As a mat-
ter of programming it seems tedious and redundant to stick to the pattern of
message exchange, and there is a continuous drive to make ‘shortcuts’. But the
previous discussion should have made clear that each such ‘shortcut’ amounts
to introducing some explicit rule of the social system, a rule which is unlikely
to be generally valid in the system.

What becomes visible is a tension between real, ‘social’ rules for communi-
cation and individual patterns of behavior in communication. Few real rules are
known at the moment, so it seems good strategy to avoid them in a computer
representation. On the other hand, the individual patterns of communication
are numerous, and if they are represented by program rules the program be-
comes overloaded and unrealistically fine grained. In serial programs there is
this tendency to work with program rules as a means of governing processes of
interaction, and as a result there is another tendency of working with rather
homogeous rules, rules which work across a wide range of individuals and situa-
tions. This is bound to create a simplistic, and sterile picture of communication

4

in a group of actors.
In this respect, a transputer system is closer to reality, simply because in

it, real messages are exchanged. The content of each message, as well as the
decision of sending it or reacting to it, is contingent on the particular state of the
individual. So whatever ‘rules’ are governing the exchange of messages: they
must be implicit in the rules representing the individuals.

If we would not represent each person by one transputer but by one process
we would face the same bias as do serial programs. We would explicitly have
to describe by program rules the effect of one person’s internal state on that of
another person which corresponds to information exchange.

3 DMASS and the Background Model

DMASS captures just one feature of a comprehensive model of social institutions
described in (Balzer, 1990).12 According to this model a social institution is a
system in which, very roughly, a hierarchical structure among groups is induced
by individual exertions of power or influence. The basic relation capturing
exertions of power is a four place relation power(i, a, j, b), reading ‘person i
by doing action a exerts power over person j so that j does action b’. An
alternative, and somewhat more neutral interpretation is obtained by replacing
exertion of power by exertion of influence. In reality, power is exerted in many
different ways, and with many different kinds of actions a, b.13

In DMASS, actions are treated in an abstract way, and are represented by
numbers. More precisely, an action is represented by a pair (I, O) of natural
numbers representing, respectively, the value or amount of input and output
of the action thus represented. I is interpreted as the effort, or the value of
the effort, it takes for a particular person to perform the action (I, O), and
O is interpreted as (the value of) the result of the action for the person. An
exertion of power involving two actions and two actors, thus is represented by
six components:

(i, j, Ii, Oi, Ij , Oj).

i is called the determining agent and j the subordinate agent, and Ii, ..., Oj are
i’s and j’s in- and outputs of the actions they perform which together make up
the exertion of power. Note that this format is very similar to that of exchange.
In fact, it can be shown that exchange is a limit case of exerting power.14

12See also (Balzer, 1993).
13Compare (Balzer, 1992).
14(Balzer, 1994).

5

In this format for power or influence, DMASS does not differentiate between
different types of power or influence, nor does it differentiate between different
kinds of actions. There is just one homogenous kind of power and one abstract
type of action which has different ‘degrees’ or ‘tokens’ as given by the numbers
I, O.

There is a finite set of individuals which can perform actions of the kind
described, and which are grouped into neighbourhoods. Each person i has a
fixed set of neighbours, and the transputer representing that person has stored
these neighbours as facts of the form neighbour(i, j) (read: ‘j is a neighbour of
i’), for finitely many j. Each person has a degree of ‘physical strength’15 which
is represented by a number s, 1 ≤ s ≤ 10. Neighbours and strengths of each
person remain fixed throughout the simulation.

Moreover, each person has an ‘account’ which in an abstract way expresses
the value of the person’s possessions. For person i this value is stored in the
form value(i, w) where w is a natural number. This value changes over time
but as the time elapsing in DMASS simply is machine time there is no need
to use an explicit argument for time. If w is replaced by some new w′ in the
course of interaction, the ‘old’ entry value(i, w) is deleted from, and the ‘new’
one, value(i, w′), is inserted in i’s database. In the beginning, each actor i has
an ‘initial endowment’, some entry value(i, w) is present in i’s database.

Now the interaction taking place in DMASS is very simple. Each person tries
to increase the value of its account by exerting power over suitable neighbours.
The only and main rule is that physical strength determines who can be a
determining agent in a given pair of actors. More precisely, each actor i chooses
one of his neighbours j, and checks whether he (i) is stronger than j. If so, i can
enforce actions on j, and j must perform them. i first chooses some ‘token’ of
exertion of power (i, j, Ii, Oi, Ij , Oj).16 He then performs ‘his’ part of the event,
namely (Ii, Oi) and then ‘forces’ j to perform ‘his’ (i.e. j’s) part (Ij , Oj). In
due course both agents actualize their accounts accordingly. i subtracts from
his present value the effort Ii and adds the output of the event, Oi, that is,
i replaces value(i, w) by value(i, w′) where w′ = w − Ii + Oi. j proceeds in
the same way with his value wj given by value(j, wj), and his action (Ij , Oj).
Basiclly, that’s all.

On the machine, this process involves just one message: when i has found a
neighbour j and a suitable power-token (i, j, Ii, Oi, Ij , Oj) he sends a message
to j telling j to perform ‘his’ (j’s) part (Ij , Oj): perform(Ij , Oj). If j finds this
message in his mailbox, he will perform, i.e. adjust his account according to the
Ij , Oj-values.

Even this rather simplistic approach provides many opportunities for varia-
tion: number of neighbours, physical strengths of the actors, the distribution of

15This degree may also be interpreted more abstractly as ‘social’ strength or wealth, or
social capital.

16The precise ways of how a neighbour and an action-token are chosen may be varied in
various directions which need not be discussed here.

6

these strengths in neighourhoods, initial endowments and their distributions in
neighbourhoods, as well as the precise rules according to which an actor chooses
among his neighbours and finds a power-token to enforce.

4 The Program

Here we provide the full program with detailed comments which should enable
the reader to follow and understand the program. Knowledge of PROLOG
notation is presupposed.

The program is described in two parts. In section A, we describe the opera-
tion of the central, organizing node, node 1. This node is operative in preparing
the system for the simulation, in particular getting necessary facts and data
from the user, sending these to the other nodes, telling them when to begin
their individual operation and when to stop. Moreover, it loads all the nec-
essary programs in the databases of the individual nodes. At the end of the
simulation, node 1 tells all other nodes to report their relevant data to node 1
from where they are given to the user.

PREDICATE simulation.

simulation :- assert facts, (1)
. collect data(N), (2)
. create individuals(N), (3)
. distribute data(N), (4)
. load individuals(N) (5)
. start simulation(N), (6)
. stop simulation(N), (7)
. show results(N). (8)

This predicate exclusively deals with node 1 which is used as the ‘coordinator’
feeding the initial data to the ‘ordinary’ nodes, and collecting data from the
‘ordinary’ nodes when the simulation is stopped. Node 1 does not act as an
ordinary individual. ‘Ordinary’ nodes, different from node 1, will be referred to
as ‘individuals’ in the following.
(1) assert facts asks for two facts the user has to feed in. These are:
a) The number of individuals taking part in the simulation. This number is
denoted by Number of individuals, or briefly, in the explanations, by N. indi-
viduals(N) is added as a fact to node 1’s database.
b) The runtime, i.e. the number of seconds the simulation is going to run, de-
noted by runtime(R), where R is a non-negative integer. After R seconds, the

7

simulation will stop, the values then present in each node are sent to node 1
and stored there for display. runtime(R) is added as a fact to the database of
node 1.
(2) collect data asks for the data defining the initial state of each indidivual
which are interactively obtained from the user. These data are:
a) the strength of each individual I, denoted by strength(I,J), where J is an
integer, 1 ≤ J ≤ N (N = Number of individuals),
b) the value W of each individual I’s account, displayed in the form value(I,W)
where W is an integer.
(3) create individuals initializes those nodes acting as individuals. This is a
feature characteristic for the transputer system.
(4) distribute data to each indidivual sends the initial data relevant for that
indidivual. These data are present in node 1 because of (2), and are sent from
there to each individual. Moreover, this predicate to each inidvidual sends a
number of rules (predicates) which the individual is to store in its data-base,
and which during simulation govern the ‘behavior’ of each indidivual. After
that, each individual is prepared with its own set of facts and rules, and thus
ready to start interacting with other individuals.
(5) load individuals loads all the predicates defined in section B below to the
database of each individual, and sets each individual in a mode in which it can
be activated by means of the ‘start’ message from node 1. This mode is set by
calling in each individual the predicate my action loop described in Sec.B.
(6) start simulation triggers the beginning of action of each individual. Each in-
dividual K starts to execute what we call its ‘main loop’ (see below). Roughly, K
checks its neighbours and their strengths, compares them with its own strength,
and then on the basis of some heuristics, tries to find a neighbour and an action
token such that performing the action token with that neighbour increases K’s
value account (possibly in a maximal way).
(7) stop simulation stops the operation of the individuals after R seconds, (R
from 1-b). Each individual quits its main loop and then sends the value present
in its account to node 1 where it is stored.
(8) show results displays the results of the value accounts of the individuals
when the simulation has stopped. Other information also might be shown with
this predicate.

We present the details in the order in which they are needed when the
program is running.

An auxiliary predicate needed for output on the screen is

PREDICATE phh(voidlist). phh([]) :- nl.
phh([H|T]) :- write(H), write(’ ’), phh(T).

PREDICATE assert facts.

8

assert facts :-
phh([’Type’, in, a, non-negative, integer, ’N’, followed, by, a, dot, ’.’, and, ’RE-
TURN.’ ’N’, denotes, the, number, of, nodes, you, want, to, ’simulate.’ ’1 ≤ N
≤ 20.’]),
read(N),
asserta(individuals(N)),
phh([’Type’, in, a, non-negative, integer, ’R’, followed, by, a, dot, ’.’, and ’RE-
TURN.’ ’R’, denotes, the, number, of, seconds, the, system, will, ’run.’]),
read(R),
asserta(runtime(R)),
fail.

The number N of individuals, individuals(N), and the runtime R -in seconds-,
runtime(R), are added to the database of node 1.

PREDICATE collect data(integer).

collect-data(N) :-
collect strengths(N),
collect values(N).

collect strengths(N) :-
database(individuals(N)),
phh([’Type’, in, a, list, of, ’N’, pairs, of, numbers, for, strengths, of, the, form,
’[i,j]’, with, ’1 ≤ i ≤ N’, and, ’0 ≤ j ≤ 10.’, ’Each’, pair, should, be, enclosed,
in, brackets, ’[].’, ’(Type’, ’[0,0]’, when, ’finished).’]),!,
repeat,
write(’Enter Strength-list: ’),
read([Individual|[Strength|[]]]),
(Individual = 0, Strength = 0 ;
asserta(strength(Individual,Strength)), fail).

The pairs strength(I,J) are put in by the user and added to the database of
node 1.

collect values(N) :-
database(individuals(N)),
phh([’Type’, in, a, list, of, ’N’, pairs, of, values, of, the, form, ’[i,v]’, with, ’1 ≤
i ≤ N’, and, an, integer, ’v.’, ’Each’, pair, should, be, enclosed, in, brackets, ’[
].’, ’(Type’,’[0,0]’, when, ’finished).’]), !,
repeat,
write(’Enter Value list: ’),
read([Individual|[Value|[]]]),
(Individual = 0, Value = 0 ;
asserta(value(Individual,Value)), fail).

The list of values of the form value(I,V) is fed in by the user and stored in the

9

database of node 1.

PREDICATE create individuals(integer).

create individuals(N) :-
database(strength(I,)),
I ≤ N,
create(msg(I,8)),
fail.
create individuals() :- !.

create(msg(I,8)) is BRAIN-AID specific. It initializes process number 8 on node
I. Process 8 is used by default.

PREDICATE distribute data(integer).

distribute data(N) :-
distribute strength data(N),
distribute values(N),
define neighbours(N).

To each individual K there are sent the following data: data about K’s strength,
about the value of K’s account, and data about the names (numbers) and
strengths of K’s neighbours. Each individual has exactly four neighbours, and
these are defined by a certain scheme which is defined by define neighbours and
need not be described here.

PREDICATE distribute strength data(integer).

distribute strength data(N) :-
database(strength(Individual,Strength)),
Individual ≤ N,
send msg((Individual,8),asserta(strength(Individual,Strength))),
fail.
distribute strength data() :- !.

The predicate iterates throught the database by getting all facts of the form
strength(I,S), checks whether I ≤ N, and then tells individual (node) I to add
the fact strength(I,S) to it’s (I’s) database. This is done with the help of the
BRAIN AID item send msg.

PREDICATE distribute values(integer).

distribute values(N) :-
database(value(Individual,Value)),
Individual ≤ N,
send msg((Individual,8),asserta(value(Individual,Value))),
fail.
distribute values().

10

The predicate iterates through the database, gets all facts of the form value(I,S),
checks whether I ≤ N, and tells individual (node) I to add the fact ‘value(I,S)’ to
it’s (I’s) database. This is done with the help of the BRAIN AID item send msg.

PREDICATE define neighbours(integer).

The effect of this predicate is to add to each individual I’s database the following
facts.
a) neighbours(I,[Neighbour1,Neighbour2,Neighbour3,Neighbour4]), where Neigh-
bour1, ..., Neighbour4 are the four neighbours of I.
b) neighbours strength(I,
[[StrengthNeighbour1,Neighbour1], [StrengthNeighbour2,Neighbour2],
[StrengthNeighbour3,Neighbour3], [StrengthNeighbour4,Neighbour4]]),
i.e. a list of four pairs of strength-values together with the names (numbers) of
the corresponding neighbours. Each pair [StrengthNeighbourJ,NeighbourJ] ex-
presses that neighbour J has strength S = StrengthNeighbourJ. ‘strength(J,S)’
is present in node 1’s database.

define neighbours(N) :-
database(strength(Individual,)),
Individual ≤ N,
neighbours(Individual,[Neighbour1,Neighbour2,Neighbour3,Neighbour4]),
database(strength(Neighbour1,StrengthNeighbour1)),
database(strength(Neighbour2,StrengthNeighbour2)),
database(strength(Neighbour3,StrengthNeighbour3)),
database(strength(Neighbour4,StrengthNeighbour4)),
send msg((Individual,8),asserta(neighbours(Individual,
[Neighbour1,Neighbour2,Neighbour3,Neighbour4]))),
send msg((Individual,8),asserta(neighbours strength(Individual,
[
[StrengthNeighbour1,Neighbour1], [StrengthNeighbour2,Neighbour2],
[StrengthNeighbour3,Neighbour3], [StrengthNeighbour4,Neighbour4]
]))),
fail.
define neighbours() :- !.

The predicate iterates through node 1’s database, gets all facts of the form
strength(I,S), checks whether I ≤ N, and then does the following. It calls the
predicate neighbours(I,List) defined below under (∗) which gives I’s four neigh-
bours in the list ‘List’. For each such neighbour ‘NeighbourJ’ node 1 then gets
from its database the strength of NeighbourJ. Node 1 then, for each individ-
ual I so obtained, tells I (by means of BRAIN AID send msg) to add the two
predicates neighbours(I,[Neighbour1,Neighbour2,Neighbour3,Neighbour4]), and
neighbours strength(I,[[StrengthNeighbour1,Neighbour1], [StrengthNeighbour2,
Neighbour2], [StrengthNeighbour3,Neighbour3], [StrengthNeighbour4,Neigh-
bour4]]) to it’s (I’s) database.

11

(∗) PREDICATE neighbours(integer,voidlist).

We assume the individuals to be connected in a ‘circular’ topology. The natural
neighbours of individual I are just the individuals I-2, I-1, I+1, I+2. However,
this assignment does not work at the point where the ‘last’ individual, N, is
put next to the ‘first’, 1. At this point some extra definitions are needed which
are expressed by the predicate node(I,J), to be read: if I+1,I+2,I-1,I-2 are in
the scope of 1,...,N then J is I, if not then J is an appropriate substitute falling
within that scope.

PREDICATE node(integer,integer).

node(Node,Correct Node Nr) :-
database(individuals(N)),
Node = 0, Correct Node Nr = N ;
Node = -1, Correct Node Nr = N - 1 ;
Node = N + 1, Correct Node Nr = 1 ;
Node = N + 2, Correct Node Nr = 2 ;
Node 6= 0, Node 6= -1, Node 6= 17, Node 6= 18,
Correct Node Nr = Node.

The number N of individuals used is taken from the database.

neighbours(Individual,[Neighbour1,Neighbour2,Neighbour3,Neighbour4]) :-
Candidate1 is Individual - 2, node(Candidate1,Neighbour1),
Candidate2 is Individual - 1, node(Candidate2,Neighbour2),
Candidate3 is Individual + 1, node(Candidate3,Neighbour3),
Candidate4 is Individual + 2, node(Candidate4,Neighbour4).

I’s second neighbour, Neighbour2, for example is determined as follows. As a
candidate, Candidate2 is defined by Candidate2 = I - 1. It is then checked
whether Candidate2 falls within the scope of 1,...,N (by means of the node-
predicate). If not, the node-predicate corrects the value of Candidate2, and sets
it to Neighbour2.

PREDICATE load individuals(integer).

This predicate refers to a file called node predicates, described in section B be-
low. In this file all the predicates to be uses by each individual are stored.

load individuals(N) :-
database(strength(I,S)),
exec(I,(load(node predicates), my action loop)).

The predicate iterates through all individuals I present in terms of strength-data
in the database of node 1. For each such individual I, it triggers the execution
of (load(node predicates), my action loop) by individual I. ‘ecex’ is a BRAIN
AID predicate, and leads to the execution of

12

(load(node predicates),my action loop).

This leads to the following. Node I loads down all the predicates from the
file node predicates, described in section B, to its database, and then exe-
cutes my action loop. The latter is one of the predicates included in the file
node predicates, and thus present in I’s database, after that file has been loaded
down.

PREDICATE start simulation(integer).

start simulation(N) :-
phh([’The’, simulation, can, now, ’begin.’, ’Type’, ’start’, followed, by, ’RE-
TURN’, to, start, the, ’simulation.’]),
read(),
start individuals(N).

The user is asked to start the simulation. If he does, the predicate start indivi-
duals is activated which is described below.

PREDICATE start individuals(integer).

start individuals(N) :-
database(strength(Individual,)),
Individual ≤ N,
send msg((Individual,8)),start),
fail.
start individuals() :-
write(’Simulation started! ... and running ...’), nl, !.

This predicate runs through node 1’s database and gets all facts of the form
strength(I,), i.e. all individuals. Each such individual then is told to start
operating by sending it the message ‘start’. When all individuals have been
treated, node 1 informs the user that the simulation has started.

All individuals now interact with each other. These interactions are inde-
pendent of node 1 and described in part B below. Meanwhile, node 1 checks
the runtime set in (1) by means of the predicate stop simulation.

PREDICATE stop simulation(integer).

stop simulation(N) :-
database(runtime(Runtime)),
time(CurrentTime),
OutTime is CurrentTime + (Runtime ? 100),
check for timeout(OutTime),
write(‘Stopping Simulation!’), nl,
database(strength(Individual,)),
Individual ≤ N,
send msg((Individual,8), quit),

13

fail.
stop simulation() :- !.

This predicate gets the runtime from node 1’s database: ‘Runtime’ which has
been put in under (1). It then checks the actual time with the predicate ‘time’
of BRAIN AID, and sets CurrentTime to the actual time. Now OutTime,
the time at which the simulation is to be stopped, is defined by OutTime
= CurrentTime + (Runtime ? 100). This value is handed over to the pred-
icate check for timeout. The predicate check for timeout(OutTime) which is
described below continuously checks whether the present time -i.e. the time
of the inbuilt clock- is identical with OutTime. If the present time becomes
greater than OutTime, check for timeout succeeds. The stop simulation predi-
cate tells the user that the simulation is stopped. It then tells each individual
(by retrieving the strengths in its database as in other instances before) to quit.
This is done by sending the message ‘quit’ to each individual. An individual
getting this message will stop its operation according to a procedure which is
independent of node 1 and therefore is described in section B below.

PREDICATE check for timeout(integer).

check for timeout(OutTime) :-
repeat,
time(CurrentTime),
(CurrentTime ≥ OutTime, write(’Reached timeout!’), !
; fail).

The following loop is repeated. Current time is retrieved from the inbuilt clock
by means of the time-predicate. If CurrentTime is ≥ the OutTime calculated
before, the cut prevents further repetition, the predicate succeeds, and we can
continue in the above predicate stop simulation. If CurrentTime < OutTime
the loop is repeated. Thus the loop will operate until current time becomes
greater than the OutTime set before.

PREDICATE show results(integer).

show results(N) :-
database(strength(Individual,)),
Individual ≤ N,
rec msg(,value(Individual,Value)),
str int(IStr,Individual),
str int(VStr,Value),
conlist([’Value account of individual ’,IStr,’ is ’,VStr,’n’], Info),
write(Info),
fail.
show results() :- !.

This predicate iterates through all individuals and then waits until from indi-

14

vidual I it gets the message ‘value(I,V)’. This is done by means of the rec msg-
predicate in BRAIN AID which succeeds only when the required message is
received. The individuals and their values are then displayed on the screen.

B: MODULE nodepredicates.

Here we describe the programs which have to be loaded to each individual
node different from node 1. These programs are loaded to the individual nodes
by means of load individuals in (5) above. The file ‘nodepredicates’ is then
sent by means of BRAIN AID ‘exec’ to each individual. In the following de-
scription, we assume that this has happended and that all programs of the file
‘nodepredicates’ are available in the database of each individual. In the fol-
lowing description we imagine to look at the programs available on node K,
K=2,...,N.

The predicates -in the order in which they will occur when the program runs-
are:

PREDICATE nodepredicates :-

my action loop, (9)
treat goal(,), (10)
insort(, ,), (11)
next receiver(,), (12)
start, (13)
action, (14)
perform(, , , ,), (15)
ran(, ,) (16)
quit. (17)

PREDICATE my action loop.

This predicate is used to control the interplay of the individuals. In its present
form, there is pretty much control.

my action loop :-
asserta(action(off)),
repeat,
(database(action(off)) ;
database(action(on)), action),
rec msg(Client,Goal),
(Goal = quit ;
treat goal(Client,Goal), fail).

The predicate begins by writing ‘action(off)’ in K’s database. As long as this
entry is present in K’s database, K is not allowed to take action; it can only react
to messages. The predicate then starts a loop which is repeated until the clause

15

‘shutdown’ is reached in which case the predicate succeeds. The first disjunction,
database(action(off)) or database(action(on)), works as follows. If ‘action(off)’
is found in the database, the clause succeeds. In this case the individual is in
a ‘passive’ mode. It calls the BRAIN AID item rec msg(Client,Goal) which is
executed only if the individual receives a message ‘Goal’ from individual ‘Client.’
As long as there is no message, the individual (K) will not do anything. When
a message is received, two cases are considered, according to the content of the
message. First case: the message is ‘shutdown’ which means that individual K
is told to stop its operation.

Second case: the Goal received is one which is admitted in the treat goal-
predicate. In this case, the goal is executed as prescribed by treat goal, see
below. After that, the node K fails, and repeats the repeat-loop. A change in
the database from ‘action(off)’ to ‘action(on)’, i.e. a switch from the passive to
an active mode, occurs when the ‘start’ predicate is called (see below).

PREDICATE treat goal(void,void).

This predicate is used in order to avoid a feature built in in BRAIN AID, namely
that in a rec msg-loop all information is retracted from the database before the
message is executed. This would lead to the destruction of all information which
each node uses in order to participate in interactions. treat goal avoids this by
specifying the different possible forms of goals which node K can receive in a
message, and by specifying K’s reaction to each such goal.

1: treat goal(,asserta(X)) :- asserta(X),!.
2: treat goal(Client,retract(X)) :-

retract(X),
send msg(Client,retract(X,success)),!.

treat goal(Client,retract()) :- send msg(Client,retract(,failure)).
3: treat goal(,start) :- start,!.
4: treat goal(,perform(A,B,C,D,E,F)) :- perform(A,B,C,D,E,F),!.
5: treat goal(Client,send strength) :-

database(strength(,MyStrength)),
send msg(Client,strength(,MyStrength)).

6: treat goal(Client,quit) :- quit(Client),!.

treat goal covers six cases. In case 1 the message received tells to asserta(X),
in which case X is added to K’s database. In case 2 the message is retract(X).
In this case K attempts to retract X from its database. If X is in fact in K’s
database, this succeeds, and K returns to the Client, from which K got the mes-
sage that X was successfully retracted. If X is not in K’s database, retract(X)
cannot succeed. In this case K uses the other avaliable option and returns to
Client that retraction has failed. In case 3 the message is ‘start’. In this case
K proceeds to the start-predicate, and thereby starts its main loop, see below.
In case 4, the message received tells ‘perform’, i.e. to perform an action type
specified by the list [A,...,F]. In this case the action type is performed accord-

16

ing to the perform-predicate described below. In case 5, the message received
says that K should send information about its strength to Client. In this case,
K retrieves its strength MyStrength from the database and sends the message
‘strength(K,MyStrength)’ to Client. In the final case, the message tells K to
quit. K then goes to the quit-predicate which -in its present version (to be
emended) simply sends the actual value of K’s account to node 1.

PREDICATE insort(voidlist,voidlist,voidlist).

insort([],[],).
insort([X|L],M,P) :- insort(L,N,P), insortx(X,N,M,P).

insort(L,N,P) sorts a list L according to an ordering relation P, and returns a
newly, ordered list N. In this, it refers to insortx, see below.

insortx(X,[A|L],[A|M],N) :-
P =.. [N,A,X], call(P), !,
insortx(X,L,M,N).
insortx(X,L,[X|L],) :- !.

The following predicate insort list(L,N,P) sorts a list of lists L according to some
order relation P, and returns a new list of lists N. This is done by comparing
only the first elements of each list in L.

insort list([],[],).
insort list([X|L],M,P) :-
insort list(L,N,P), insortx list(X,N,M,P).

The predicate insortx list is defined below.

insortx list(X,[A|L],[A|M],N) :-
order1(A,X,N), !,
insortx list(X,L,M,N).
insortx list(X,L,[X|L],) :- !.

The order referred to in the previous predicate is defined as follows.

order1([A|],[B|],N) :- P =.. [N,A,B], call(P).

PREDICATE next receiver(integer,integer).

This predicate randomly selects one of K’s four neighbours with whom K will
interact in the next step.

next receiver(Individual,Neighbour) :-
database(neighbours(Individual, [Neighbour1,Neighbour2,Neighbour3,Neigh-
bour4])),
random(Number),
Selector is Number mod 4,
(Selector = 0, Neighbour is Neighbour1;

17

Selector = 1, Neighbour is Neighbour2;
Selector = 2, Neighbour is Neighbour3;
Selector = 3, Neighbour is Neighbour4).

This predicate first gets from K’s database the fact neighbours(K, [N1,...,N4])
stating the list [N1,...,N4] of K’s four neighbours. Next, a random number ‘Num-
ber’ is chosen, and taken modulo 4, the result is called Selector. Thus Selector
is one of the numbers 0,1,2,3 picked randomly. The next receiver then is defined
as neighbour J where J is the value of Selector, i.e. the random number from
the set 0,1,2,3.

PREDICATE start.

start :-
get my ids(Individual,),
database(neighbours strength(Individual,NeighboursStrengthList)),
retract(neighbours strength(Individual,NeighboursStrengthList)),
insort list(NeighboursStrengthList,SortedNeighboursStrengthList,’<’),
asserta(neighbours strength(Individual,SortedNeighboursStrengthList)),
retract(action(off)),
asserta(action(on)).

When node K executes ‘start’, it gets its BRAIN AID identification, which is
(K,8). It then gets from its database the list of the strengths of its four neigh-
bours which has been stored in the database by means of (2) and (4) in Sec.A.
This list is sorted according to increasing strength, such that the first item in
the list is the weakest neighbour. Technically, the ordering is achieved by the
predicates defined under (11) above. The original list of strengths is retracted
from the database and replaced by the new, sorted one. Then K changes its
action mode. The fact ‘action(off)’ indicating passive mode is replaced by ‘ac-
tion(on)’ in the database. K is now in the active mode, and in the repeat-loop
of my action loop in (9) ‘action’ will be reached. K now executes the action
predicate described below.

PREDICATE sort(voidlist,voidlist).

order(N,H) :- integer(N), integer(H), H < N.
sort(L1,L2) :- permutation(L1,L2), sorted(L2), !.
permutation(L,[H|T]) :-
append(V,[H|U],L), append(V,U,W),
permutation(W,T).
permutation([],[]).

sorted(L) :- sorted(0,L).
sorted(, []).
sorted(N,[H|T]) :- order(N,H), sorted(H,T).

PREDICATE action.

18

This prediacte describes the main loop which each individual can execute. It
uses the above standard predicate for sorting. K is the individual under consid-
eration.

action :-
database(strength(K,S)),
database(neighbours strength(K,List)),
List = [[SN1,N1],[SN2,N2],[SN3,N3],[SN4,N4]],
ran(I1,0,10) , ran(I2,0,9),
I2 - I1 < S - SN1 , asserta(aux(N1,SN1,I1,I2)),
nextto([SN1,N1],[SN2,N2],List),
(I2 - I1 < S - SN2 , asserta(aux(N2,SN2,I1,I2)) ;
S - SN2 ≤ I2 - I1),
nextto([SN2,N2],[SN3,N3],List),
(I2 - I1 < S - SN3 , asserta(aux(N3,SN3,I1,I2)) ;
S - SN3 ≤ I2 - I1),
nextto([SN3,N3],[SN4,N4],List),
(I2 - I1 < S - SN4 , asserta(aux(N4,SN4,I1,I2)) ;
S - SN4 ≤ I2 - I1),
calculate values(I1,I2),
findall(Wi1, aux1((Ni,I1,Wi1,I2,Wi2), List1),
sort(List1, List2),
member(X,List2),
aux1(N,I1,W1,I2,W2),
send msg(msg(N,8),
perform(K,I1,W1,I2,W2)),
database(value(Node,Worth)),
NewWorth is Worth + W1,
retract(value(Node,Worth)),
asserta(value(Node,NewWorth)).

calculate values(I1,I2) :-
database(aux(Ni,SNi,I1,I2),
(SNi < S , Wi1 is I2 ? SNi, Wi2 is 10 - (2 ? I2) , asserta(aux1(Ni,I1,Ei1,I2,Wi2))
;
S ≤ SNi , Wi1 is 10 - (2 ? I1) , Wi2 is I1 ? S, asserta(aux1(Ni,I1,Wi1,I2,Wi2))
),
fail.
calculate values(I1,I2).

PREDICATE perform(integer,integer,integer,integer,integer).

perform(I,I1,W1,I2,W2) :-
database(value(N,W)),
W3 is (W + W2)-I2,
retract(value(N,W)),

19

asserta(value(N,W3)).

An individual K getting this order by a message is told to perform the action-
type [I1,W1,I2,W2] in the position of the subordinate agent. K subsequently
adjusts its value-account by adding the value W2 of the action-type to its previ-
ous value W, and subtracting I2. Individual I is the ‘sender’ of the order which
is not used in the present version.

PREDICATE ran(integer,integer,integer).

ran(X,A,Z) :-
Z ≥ A, D is Z - A, M is D / 2, N is D - M,
random(P1), random(P2),
X is (a + (P1 mod (M + 1)) + (P2 mod (N + 1)).

References

W.Balzer, 1990: A Basic Model for Social Institutions, Journal of Mathematical
Sociology 16, 1-29.
W. Balzer, 1993: Soziale Institutionen, Berlin: de Gruyter.
W.Balzer, 1992: A Theory of Power in Small Groups, in: H. Westmeyer (ed.),
The Structuralist Program in Psychology, Bern: Hogrebe, 191-210.
W.Balzer, 1994: Exchange versus Influence: A Case of Idealization, in B.Hamm-
inga & N.B.de Marchi (eds.), Idealization VI: Idealization in Economics, Poznan
Studies in the Philosophy of the Sciences and the Humanities 38, Amsterdam:
Rodopi, 189-203.
E.Cohors-Fresenborg, 1977: Mathematik mit Kalkülen und Maschinen, Braun-
schweig: Vieweg.
W.F.Clocksin & C.S.Mellish, 1984: Programming in PROLOG, Berlin etc.:
Springer, 2nd ed.
P.Derantsart, A.Ed-Dbali, L.Cervoni, 1996: PROLOG: The Standard, Berlin
etc. Springer.
R.Hegselmann, 1994: Solidarität in einer egoistischen Welt: eine Simulation, in
J.Nida-Ruemelin (Hrsg.), Praktische Rationalität, Berlin: de Gruyter, 349-90.
W.B.G.Liebrand and D.M.Messick, 1992: Computer Simulation of the Relation
Between Individual Heuristics and Global Cooperation in Prisoner’s Dilemmas,
Social Science Computer Review 11, 301-12.
M.Ostermann, F.Bergmann, G.v. Walter, 1995: Brain Aid Systems, Dokumen-
tation von BRAIN AID PROLOG, erhältlich von M.Ostermann, Bogenstr.9,
52080 Aachen.

20

A.S.Rao & M.P.Georgeff, 1991: Modelling Rational Agents within a BDI Ar-
chitecture, in J.Allen et al. (eds.), Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning, Morgan
Kaufman, 473-84.

21

